Chemostratigraphy of the Pliensbachian, Puesto Araya Formation (Neuquén Basin, Argentina)

Authors

  • Susana A. Valencio
  • Mariana Celina Cagnoni
  • Adriana María Ramos
  • A. C. (Alberto Carlos) Riccardi
  • Héctor Osvaldo Panarello

DOI:

https://doi.org/10.1344/105.000001403

Keywords:

Chemostratigraphy, Ammonite Zonation, Bivalve shells, Pliensbachian

Abstract

In a preliminary attempt to establish an isotope stratigraphy, strontium, carbon and oxygen isotope ratios were determined from marine biogenic carbonates of Pliensbachian age, in the context of scheme of local ammonite Zones correlatable to the European Standard Zonation. Two sections, rio Atuel and arroyo Serrucho, of the mainly siliciclastic Puesto Araya Formation, Neuquen Basin, south-western Mendoza, Argentina, were studied. Specimens of the bivalve genera Weyla Bhom and Gryphaea Lamarck were selected for the isotopic determinations because of their low-Mg calcite original mineralogy and widespread presence. Scanning electron microscopy, X-ray diffraction and X-ray fluorescence spectrometry techniques were used to control the good degree of preservation of most of the biogenic material, as evidenced by pristine fabrics, 100% calcite composition and Sr, Mn and Fe concentrations. Although strontium isotope ratios are slightly scattered, it is possible to compare them with those of the Early Jurassic seawater reference curve. Carbon isotope signals show two relative maxima, correlatable with those recorded for the upper part of the Ibex Zone and the middle part of the Margaritatus Zone in various European sections, indicating the possible global significance of these events. δ18O values were found to be unreliable for isotope stratigraphy, as they are largely depleted in comparison to those of coeval unaltered marine carbonates.

References

Anderson, T., Popp, B., Williams, A., Ho, L., Hudson, J., 1994. The stable isotopic records of fossils from the Peterborough Member, Oxford Clay Formation (Jurassic), UK: palaeoenvironmental implications. Journal of the Geological Society of London, 151, 125-138.

Brand, U., Veizer, J., 1980. Chemical Diagenesis of a MultiComponent Carbonate System. 1. Trace Elements. Journal of Sedimentary Petrology, 50, 1219-1236.

Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R. B., Nelson, H.F., Otto, J.B., 1982. Variation of seawater 87Sr/86Sr

throughout Phanerozoic time. Geology, 10, 516–519.

Cagnoni, M.C., Valencio, S.A., Ramos, A.M., Riccardi, A.C., Panarello, H.O., 2001. Stable and strontium isotopic records of molluscan shells, Lower Jurassic, Cuenca Neuquina, southwestern Mendoza, Argentina. III Symposium on Isotope Geology. Pucón, Chile, Sociedad Geológica de Chile, CD, 367-370.

Carter, J.G., 1990. Evolutionary significance of shell microstructure in the Palaeotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca). In: Carter, J.G. (ed.). Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. New York, USA, Van Nostrand Reinhold, I, 216-264.

Damborenea, S.E., Manceñido, M.O., 1993. Formación Puesto Araya. In: Riccardi, A.C., Damborenea, S.E. (eds.). Léxico Estratigráfico de la Argentina. Jurásico. Buenos Aires, Argentina, Asociación Geológica Argentina, IX, 345.

Gulisano, C.A., Gutiérrez Pleimling, A.R., 1995. The Jurassic of the Neuquén Basin, Mendoza Province. Buenos Aires, Argentina. Asociación Geológica Argentina, Serie E Nº3 y Secretaría de Minería de la Nación, Publicación, 159, 103 pp.

Jacobsen, S., Kaufman, A., 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 161, 37-57.

Jenkyns, H.C., Clayton, C.J., 1986. Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic.

Sedimentology, 33, 87-106.

Jenkyns, H.C., Jones, C.E., Gröcke, D.R., Hesselbo, S.P., Parkinson, D.N., 2002. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. Journal of the Geological Society of London, 159, 351-378.

Jones, C.E., Jenkyns, H.C., Hesselbo, S.P., 1994. Strontium Isotopes in Early Jurassic Seawater. Geochimica et Cosmochimica Acta, 58, 1285-1301.

Jones, C.E., Jenkyns, H.C., 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in

the Jurassic and Cretaceous. American Journal of Science, 301, 112-149.

Kaufman, A.J., Knoll, A.H., 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research, 73, 27-49.

Lanés, S., 2002. Paleoambientes y paleogeografía de la primera transgresión en Cuenca Neuquina, sur de Mendoza. Doctoral thesis. Universidad de Buenos Aires, 403 pp.

Legarreta, L., Uliana, M.A., 1999. El Jurásico y Cretácico de la Cordillera Principal y la Cuenca Neuquina. 1: Facies Sedimentarias. In: Caminos, R. (ed.). Geología Argentina. Buenos Aires, Argentina, Servicio Geológico Minero Argentino, 29, 399-416.

McCrea, J.M., 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics, 18, 849-857.

Morrison, J., Brand, U., 1988. An evaluation of diagenesis and chemostratigraphy of Upper Cretaceous mollusks from the

Canadian Interior Seaway. Chemical Geology, 72, 235-248.

Panarello, H.O., Dapeña, C., 1996. Mecanismos de recarga y salinización en las cuencas de los ríos Mendoza y Tunuyán,

Mendoza, República Argentina: evidenciados por isótopos ambientales. Tarija, Bolivia, Memorias del XII Congreso Geológico de Bolivia, II, 531-543.

Podlaha, O.G., Mutterlose, J., Veizer, J., 1998. Preservation of 18O and 13C in belemnite rostra from the Jurassic/Early Cretaceous successions. American Journal of Science, 298, 324-347.

Popp, B.N., Anderson, T.F., Sandberg, P.A., 1986. Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geological Society of America Bulletin, 97, 1262-1269.

Riccardi, A.C., Damborenea, S.E., Manceñido, M.O., Ballent, S.C., 1999. El Jurásico y Cretácico de la Cordillera Principal y la Cuenca Neuquina. 3: Bioestratigrafía. In: Caminos, R. (ed.). Geología Argentina. Buenos Aires, Servicio Geológico Minero Argentino, 29, 419-432.

Riccardi, A.C., Leanza, H.A., Damborenea, S.E., Manceñido, M.O., Ballent, S.C., Zeiss, A., 2000. Marine Mesozoic Biostratigraphy of the Neuquén Basin. Hannover, Zeistchrift für Angewandte Geologie, Sonderheft, 1, 103-108.

Rosales, I., Quesada, S., Robles, S., 2001. Primary and diagenetic isotopic signals in fossils and hemipelagic carbonates: the Lower Jurassic of northern Spain. Sedimentology, 48, 1149-1169.

Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O., Strauss, H., 1999.87Sr/86∑, 13C and 18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59-8

Downloads

Published

2005-01-12