Crandallite-rich beds of the Libkovice Member, Most Basin, Czech Republic: climatic extremes or paleogeographic changes at the onset of the Miocene Climatic Optimum?

Authors

  • Karel Mach Severočeské doly a.s.
  • Vladislav Rapprich Czech Geological Survey
  • Martin Faměra Institute of Inorganic Chemistry of the Czech Academy of Sciences
  • Martina Havelcová Institute of Rock Structure and Mechanics of the Czech Academy of Sciences
  • Tomáš Matys Grygar Institute of Inorganic Chemistry of the Czech Academy of Sciences
  • Tomáš Novotný Severočeské doly a.s.
  • Michal Řehoř Brown Coal Research Institute, Inc.
  • Yulia Erban Kochergina Czech Geological Survey

DOI:

https://doi.org/10.1344/GeologicaActa2021.19.11

Keywords:

Miocene climatic optimum, crandallite, Miocene, Most Basin, Pannonian tuff

Abstract

We describe the occurrence and possible origin of rare beds 1–10cm thick and containing 20–70% of crandallite, a Ca-Al phosphate enriched in Sr and Ba, found within otherwise monotonous clay-rich lacustrine sediments of the Most Basin in the Central-European Neogene Ohře Rift system. The beds were formed at ca. 17.31, 17.06, and 16.88Ma, while the entire suite of monotonous clays of the Libkovice Member was deposited between 17.46 and 16.65Ma. Trace-element and organic geochemistry, Ar-Ar geochronology and C-O-Sr isotope systematics are used to infer their source and processes leading to their formation. The most enigmatic aspect of the formation of the crandallite beds is the removal of a huge amount of phosphorus from its biogenic cycle in the lacustrine system, which was otherwise stable for ca. 0.8My. Formation of detritus-poor crandallite beds could result from some exceptional environmental disruptions that hindered transport of fine clastic material to the basin floor. Silicic volcanic activity in the area of the Pannonian Basin could have triggered this disruption. Crandallite could provide evidence of long-lasting droughts and acidification of the exogenic environment, as they are roughly coeval with the onset of the Miocene Climatic Optimum at ca. 17.0Ma.

Author Biography

Karel Mach, Severočeské doly a.s.

department of geology

References

Ackerman, L., Ulrych, J., Řanda, Z., Erban, V., Hegner, E., Magna, T., Balogh, K., Frána, J., Lang, M., Novák, J.K., 2015. Geochemical characteristics and petrogenesis of phonolites and trachytic rocks from the České Středohoří Volcanic Complex, the Ohře Rift, Bohemian Massif. Lithos, 224-225, 256-271.

Bachmann, O., Oberli, F., Dungan, M.A., Meier, M., Mundil, R., Fischer, H., 2007. 40Ar/39Ar and U-Pb dating of the Fish Canyon magmatic system, San Juan Volcanic field, Colorado: Evidence for an extended crystallization history. Chemical Geology, 236, 134-166.

Baubron, J.C., Demange, J., 1982. First geochronological study of the volcanic plateau of Aubrac (French Massif Central)-

tectonic and regional implications. Journal of Volcanology and Geothermal Research, 14(1-2), 67-75.

Bauluz, B., Gasca, J.M., Moreno-Azanza, M., Canudo, J.I., 2014. Unusual replacement of biogenic apatite by aluminium phosphate phases in dinosaur teeth from the Early Cretaceous of Spain. Lethaia, 47, 556-566.

Borruel-Abadía, V., Barrenechea, J.F., Galán-Abellán, A.B., Alonso-Azcárate, J., De la Horra, R., Luque, F.F., LópezGómez, J., 2016. Quantifying aluminium phosphate–sulphate minerals as markers of acidic conditions during the Permian–Triassic transition in the Iberian Ranges, E Spain. Chemical Geology, 429, 10-20.

Borruel-Abadía, V., Barrenechea, J.F, Galán-Abellán, A.B., De la Horra, R., López-Gómez, J., Ronchi, A., Luque, F.J., AlonsoAzcárate, J., Marzo, M., 2019. Could acidity be the reason behind the Early Triassic biotic crisis on land? Chemical Geology, 515, 77-86.

Bourbonniere, R.A., Meyers, P.A., 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnology and Oceanography, 41, 352-359.

Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: meteorite studies. Developments in geochemistry, Elsevier, 2, 63-114.

Coufal, P., Mejstříková, L., 1996. Unikátní barium-stronciová mineralizace na lokalitách DNT. Hnědé Uhlí, VUHU Most, 1(96), 41-50.

Dericquebourg, P., Person, A., Ségalen L., Pickford, M., Senut, B., Fagel, N., 2015. Environmental significance of Upper Miocene phosphorites at hominid sites in the Lukeino Formation (Tugen Hills, Kenya). Sedimentary Geology, 327, 43-54.

Dericquebourg, P., Person, A., Ségalen, L., Pickford, M., Senut, B., Fagel, N., 2019. Bone diagenesis and origin of calcium phosphate nodules from a hominid site in the Lukeino Formation (Tugen Hills, Kenya). Palaeogeography, Palaeoclimatology, Palaeoecology, 536, 1-12.

Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., Eglinton, G., 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272, 216-222.

Dill, H.G., 2001. The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. EarthScience Reviews, Elsevier, 53, 35-93.

Elderfield, H., Pagett, R., 1986. REE in ichthyoliths: variations with redox conditions and depositional environment. Science

of Total Environment, 49, 175-197.

Evans-White, M., Stelzer, R.S., Lamberti, G.A., 2005. Taxonomic and regional patterns in benthic macroinvertebrate elemental composition in streams. Freshwater Biology, 11, 1786-1799.

Fernando, H.J.S., 1991. Turbulent mixing in stratified fluids. Annual Review of Fluid Mechanics, 23, 455-493.

Gladstone, Ch., McClelland, H.L.O., Woodcock, N.H., Hunt, J.E., 2018. The formation of convolute lamination in mud-rich turbidites. Sedimentology, 65, 1800-1825.

Haskin, M.A., Haskin, L.A., 1966. Rare earths in European shales: a redetermination. Science, 154, 507-509.

Havelcová, M., Sýkorová, I., Mach, K., Trejtnarová, H., Blažek, J., 2015. Petrology and organic geochemistry of the lower Miocene lacustrine sediments (Most Basin, Eger Graben, Czech Republic). International Journal of Coal Geology, 139, 26-39.

Hecky, R.E., Campbell, P., Hendzel, L.L., 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter

of lakes and oceans. Limnology and Oceanography, 38(4), 709-724.

Heifetz, E., Agnon, A., Marco, S., 2005. Soft sediment deformation by Kelvin Helmholtz Instability: A case from Dead Sea earthquakes. Earth and Planetary Science Letters, 236, 497-504.

Hessen, D.O., Andersen, T., 1990. Bacteria as a source of phosphorous for zooplankton. Hydrobiologia, 206, 217-223.

Holbourn, A., Kuhnt, W., Kochhann, K.G.D., Andersen, N., Meier, K.J.S., 2015. Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum. Geology, 43, 123-126.

Holub, F.V., Rapprich, V., Erban, V., Pécskay, Z., Mlčoch, B., Míková, J., 2010. Petrology and geochemistry of the Tertiary alkaline intrusive rocks at Doupov, Doupovské hory Volcanic Complex (NW Bohemian Massif). Journal of Geosciences, 55(3), 251-278.

Hora, J.M., Singer, B.S., Jicha, B.R., Beard, B.L., Johnson, C.M., de Silva, S., Salisbury, M., 2010. Volcanic biotite-sanidine 40Ar/39Ar age discordances reflect Ar partitioning and preeruption closure in biotite. Geology, 38(10), 923-926.

Huang, W.H., Keller, W.D., 1972. Geochemical mechanics for the dissolution, transport, and deposition of aluminium in the

zone of weathering. Clays and Clay Minerals, 20, 69-74.

Jochum, P., Hohl, U., Herwig, K., Lammel, E., Stoll, B., Hofmann, A.W., 2005. GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards. Geostandards and Geoanalytical Research, 29(3), 333-338.

Kasinski, J., 1991 Tertiary lignite‐bearing lacustrine facies of the Zittau Basin: Ohre rift system (Poland, Germany and Czechoslovaquia). International association of Sedimentology, 13 (Special Publications), 93-107.

Kempe, U., Bombach, K., Matukov, D., Schlothauer, T., Hutschenreuter, J., Wolf, D., Sergeev, S., 2004. Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralization in the Eibenstock granite, Erzgebirge, Germany: considering effects of zircon alteration. Mineralium Deposita, 39, 646-669.

Kokowska-Pawlowska, M., Nowak, J., 2013. Phosphorus minerals in tonstein; coal seam 405 at Sośnica-Makoszowy coal mine, Upper Silesia, southern Poland. Acta Geologica Polonica, 63(2), 271-281.

Kedzierski, M., Uchman, A., Sawlowicz, Z., Briguglio, A., 2015. Fossilized bioelectric wire – the trace fossil Trichichnus. Biogeosciences, 12, 2301-2309.

Kříbek, B., Knésl, I., Rojík, P., Sýkorová, I., Martínek, K., 2017. Geochemical history of a Lower Miocene lake, the Cypris Formation, Sokolov Basin, Czech Republic. Journal of Paleolimnology, 58, 169-190.

Lieth, H., Whittaker, R.H. (eds.), 1975. Primary Productivity of the Biosphere. Ecological studies, Analysis and synthesis, Springer-Verlag New York Inc., 14, 339pp.

Lippolt, H.J., 1983. Distribution of volcanic activity in space and time. In: Fuchs, K. (ed.). Plateau uplift. Springer, 112-120.

Mach, K., 1997. A logging correlation scheme for the Main coal seam of the North Bohemian brown coal basin, and the implications for the palaeogeographical development of the basin. European Coal Geology and Technology, Geological Society, 125 (Special Publications), 309-320.

Mach, K., Žák, K., Jačková, I., 1999. Sulphur speciation and isotopic composition in a vertical profile of the main coal seam of the North Bohemian Brown Coal basin and their paleogeographic interpretation. Bulletin of the Czech Geological Survey, 74(1), 51-66.

Mach, K., Žák, K., Jačková, I., 2001. Stable Isotope study of diagenetic carbonates in Miocene sediments of the North Bohemian Brown Coal Basin (“Most Basin”), Czech Republic. Abstracts of the 9th Coal Geology Conference Prague, 23.

Mach, K., Teodoridis, V., Matys Grygar, T., Kvaček, Z., Suhr, P., Standke, G., 2014. An evaluation of paleogeography and paleoecology in the Most Basin (Czech Republic) and Saxony (Germany) from the late Oligocene to the early Miocene. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 272(1), 13-45.

Matys Grygar, T., Mach, K., 2013a. Regional chemostratigraphic key horizons in the macrofossil-barren siliciclastic lower

Miocene lacustrine sediments (Most Basin, Eger Graben, Czech Republic). Bulletin of Geosciences, 88(3), 557-571.

Matys Grygar, T., Mach, K., 2013b. Chemostratigraphy of Miocene sediments in Most Basin. Zprávy o geologických výzkumech v roce 2012. A regionální geologie a stratigrafie, 26-29.

Matys Grygar, T., Mach, K., Schnabl, P., Pruner, P., Laurin, J., Martinez, M., 2014. A lacustrine record of the early stage of the Miocene Climatic Optimum in Central Europe from the Most Basin, Ohře (Eger) Graben Czech Republic. Geological Magazine, 151(6), 1013-1033.

Matys Grygar, T., Hošek, M., Mach, K., Schnabl, P., Martinez, M., 2017. Climatic instability before the Miocene Climatic Optimum reflected in a Central European lacustrine record from the Most Basin in the Czech Republic. Palaeogeography,

Palaeoclimatology, Palaeoecology, 485, 930-945.

Matys Grygar, T., Mach, K., Martinez, M., 2019a. Checklist for the use of potassium concentrations in siliciclastic sediments as paleoenvironmental archives. Sedimentary Geology, 382, 75-84.

Matys Grygar, T., Mach, K., Schnabl, P., Martinez, M., Zeeden, C., 2019b. Orbital forcing and abrupt events in a continental

weathering proxy from central Europe (Most Basin, Czech Republic, 17.7–15.9 Ma) recorded beginning of the Miocene Climatic Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology, 514, 423-440.

Matys Grygar, T., Mach, M. Koubová, P., Martinez, M., Hron, K., Fačevicová, K., 2021. Beginning of the Miocene Climatic Optimum in Central Europe in sediment archive of he Most Basin, Czech Republic. Bulletin of Geosciences, 96, 61-81.

May, I., Schnepfe, M.M., Naeser, C.R., 1963. Strontium Sorption Studies on Crandallite. Contributions to Geochemistry, Geological survey Bulletin, United States Printing Office, Washington, 1144-C, 1-17.

McArthur, J.M., Howarth, R.W., Bailey, T.R., 2001. Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. The Journal of Geology, 109, 155-170.

McArthur, J.M., Howarth, G.A., Shields, G.A., 2012. Strontium Isotope Stratigraphy. In: Gradstein, F.M., Ogg, J.G., Schmitz., Ogg, G. (eds.). The Geologic Time Scale. Elsevier, 127-144.

McKelvey, V.E., 1967. Phosphate Deposits. Contributions to economic geology. Geological Survey Bulletin, 1252-D, 21pp.

McIntyre, P.B., Flecker, A.S., 2010. Ecological Stoichiometry as an Integrative Framework in Stream Fish Ecology. American Fisheries Society Symposium, American Fisheries Society, 73, 539-558.

Mikuláš, R., Mach, K., Dvořák, Z., 2006. Bioturbation of Claystones of the Most Basin in the Bílina Quarry (Miocene, Czech Republic). Acta Universitatis Carolinae Geologica, 2003, 47(1-4), 79-85.

Muszyński, M., Wyszomirski, P., 1998. New occurrences of the crandallite group minerals in sedimentary rocks of Poland.

Mineralogia Polonica, 29(1), 19-27.

Nádaskay, R., Kochergina, Y.V., Čech, S., Švábenická, L., Valečka, J., Erban, V., Halodová, P., Čejková, B., 2019. Integrated stratigraphy of an offshore succession influenced by intense siliciclastic supply: Implications for Coniacian tectonosedimentary evolution of the West Sudetic area (NW Bohemian Cretaceous Basin, Czech Republic). Cretaceous Research, 102, 127-159.

Novák, F., Pekárková, R., Ševců, J., 1993. Barium rich crandallite from the Nástup Tušimice quarry (North Bohemian Brown

Coal Basin). Věstník českého geologického ústavu, 68(2), 53-57.

Novotný, T., Mach, K., 2017. Jsou v hlavní sloji mostecké pánve zachovány vulkanogenní proplástky (tzv. tonsteiny)? Zpravodaj Hnědé uhlí, VUHU Most, 2, 25-36.

Pécskay, Z., Lexa, J., Szakács, A., Seghedi, I., Balogh, K., Konečný, V., Zelenka, T., Kovacs, M., Póka, T., Fülöp, A., Márton, E.,

Panaiotu, C., Cvetković, V., 2006. Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area.

Geologica Carpathica, 57(6), 511-530.

Pe-Piper, G., Dolansky, L.M., 2005. Early diagenetic origin of Al phosphate-sulfate minerals (woodhouseite and crandallite

series) in terrestrial sandstones, Nova Scotia, Canada. American Mineralogist, 90, 1434-1441.

Rajchl, M., Uličný, D., Grygar, R., Mach, K., 2009. Evolution of basin architecture in an incipient continental rift: the Cenozoic Most Basin Eger Graben (Central Europe). Basin Research, 21, 269-294.

Rampino, M.R., Self, S., 1992. Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature, 359(6390), 50-52.

Rapprich, V., Cajz, V., Košťák, M., Pécskay, Z., Řídkošil, T., Raška, P., Radoň, M., 2007. Reconstruction of eroded monogenic

Strombolian cones of Miocene age: A case study on character of volcanic activity of the Jicin Volcanic Field (NE Bohemia)

and subsequent erosional rates estimation. Journal of Geosciences, 52(3-4), 169-180.

Rapprich, V., Holub, F.V., 2008. Geochemical variations within the Upper Oligocene-Lower Miocene lava succession of Úhošť

Hill (NE margin of Doupovské hory Mts., Czech Republic). Geological Quarterly, 52(3), 253-268.

Roetzel, R., de Leeuw, A., Mandic, O., Márton, E., Nehyba, S., Kuiper, K.F., Scholger, R., Wimmer-Frey, I., 2014. Lower Miocene (Upper Burdigalian, Karpatian) volcanic ashfall at the south-eastern margin of the Bohemian Massif in Austria - New evidence from 40Ar/39Ar-dating, paleomagnetic, geochemical and mineralogical investigations. Austrian Journal of Earth Sciences, 107(2), 2-22.

Rojík, P., 2004. New stratigraphic subdivision of the Tertiary in the Sokolov Basin in Northwestern Bohemia. Journal of the

Czech Geological Society, 49(3-4), 173-184.

Rosenbaum, J., Sheppard, S.M.F., 1986. An isotopic study of siderites, dolomites and ankerites at high-temperatures. Geochimica et Cosmochimica Acta, 50(6), 1147-1150.

Spell, T.L., Harrison, T.M., 1993. 40Ar/39Ar geochronology of post-Valles Caldera rhyolites, Jemez Volcanic Field, New Mexico. Journal of Geophysical Research (Solid Earth), 98, 8031-8051.

Spötl, C., 1990. Authigenic aluminium phosphate-sulphates in sandstones of the Mitterberg Formation, Northern Calcareous Alps, Austria. Sedimentology, 37, 837-845.

Steiger, R.H., Jäger, E., 1977. Subcommission on Geochronology; convention on the use of decay constants in geo and

cosmochronology. Earth and Planetary Science Letters, 36, 359-362.

Štemprok, M., 2016. Drill hole CS-1 penetrating the Cínovec/Zinnwald granite cupola (Czech Republic): an A-type granite with important hydrothermal mineralization. Journal of Geosciences, 61(4), 395-423.

Szakács, A., Szakács, A., Márton, E., Póka, T., Zelenka, T., Pécskay, Z., Seghedi, I., 1998. Miocene acidic explosive volcanism in

the Bukk Foreland, Hungary: identifying eruptive sequences and searching for source locations. Acta Geologica Hungarica,

(4), 413-435.

ten Haven, H.L., de Leeuw, J.W., Rullkötter, J., Sinninghe Damsté, J.S., 1987. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature, 330, 641-643.

Triplehorn, D.M., Bohor, B.F., 1983. Goyazite in kaolinic altered tuff beds of Creataceous age near Denver, Colorado. Clays and Clay Minerals, 31(4), 299-304.

Ulrych, J., Svobodová, J., Balogh, K., 2002. The source of Cenozoic volcanism in the České středohoří Mts., Bohemian Massif. Neues Jahrbuch für Mineralogie, Abhandlungen, 177(2), 133-162.

Ulrych, J., Dostal, J., Adamovič, J., Jelínek, E., Špaček, P., Hegner, E., Balogh, K., 2011. Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos, 123, 133-144.

Veizer, J., 1993. Anthropogenic/Geogene dynamics of the Danube and the Elbe: Carbon and Strontium isotopes. Boston (MA, U.S.A.), GSA Annual Meeting, GSA Abstracts with Programs, A415.

Vieillard, P., Tardy, Y., Nahon, D., 1979. Stability fields of clays and aluminium phosphates: paragenesis in lateritic weathering of argillaceous phosphatic sediments. American Mineralogist, 64, 626-634.

Volkman, J.K., Johns, R.B., Gillan, F.T., Perry, G.J., Bavor Jr., H.J., 1980. Microbial lipids of an intertidal sediment, I. Fatty acids

and hydrocarbons. Geochimica et Cosmochimica Acta, 44, 1133-1143.

Walther, D., Breitkreuz, Ch., Rapprich, V., Kochergina, Y.V., Chlupáčová, M., Lapp, M., Stanek, K., Magna, T., 2016. The Late Carboniferous Schönfeld–Altenberg Depression on the NW margin of the Bohemian Massif (Germany/Czech Republic): volcanosedimentary and magmatic evolution. Journal of Geosciences, 61, 371-393.

Wright, J., Schrader, H., Holserab, W.T., 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta, 51, 631-644.

Zagorac, D., Müller, H., Ruehl, S., Zagorac, J., Rehme, S.J., 2019. Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. Journal of Applied Crystallography, 52, 918-925.

Žák, K., 2007. Souhrnné zpracování geochemických dat z karbonátových konkrecí a pevných karbonátových poloh v lomu Bílina. Bílina (Severočeské doly, a.s.), Unpublished report, 80 pp.

Zelenka, T., Balázs, E., Balogh, K., Kiss, J., Kozák, M., Nemesi, L., Pécskay, Z., Püspöki, Z., Ravasz, C., Szeky-Fux, V., Újfalussy,

A., 2004. Buried Neogene volcanic structures in Hungary. Acta Geologica Hungarica, 47(2-3), 177-219.

Zieliński, M., Dopieralska, J., Belka, Z., Walczak, A., Siepak, M., Jakubowicz, M., 2018. Strontium isotope identification of water mixing sources in a river system (Oder River, central Europe): A guantitative aproach. Hydrological Processes, 1-15.

Downloads

Published

2021-09-20

Issue

Section

Articles