Critical analysis of Mediterranean sea level limit cycles during the Messinian salinity crisis
DOI:
https://doi.org/10.1344/GeologicaActa2021.19.10Keywords:
Messinian Salinity Crisis, sea-level change, Mediterranean, Strait of GibraltarAbstract
The Messinian Salinity Crisis (5.97-5.33Ma) may be one of the most significant periods of sea-level change in recent geologic history. During this period, evaporite deposition throughout the Mediterranean basin records a series of dramatic environmental changes as flow through the Strait of Gibraltar was restricted. In the first stage of evaporite deposition, cycles of gypsum appear in shallow basins on the margins of the Mediterranean. The complex environmental history giving rise to these cycles has been investigated for decades but remains controversial. Notably, whether the evaporites are connected to significant changes in Mediterranean sea level is an open question.
In one proposed model, competition between tectonic uplift and erosion at the Strait of Gibraltar gives rise to selfsustaining sea-level oscillations—limit cycles—which trigger evaporite deposition. Here I show that limit cycles are not a robust result of the proposed model and discuss how any oscillations produced by this model depend on an unrealistic formulation of a key model equation. First, I simplify the model equations and test whether limit cycles are produced in 64 million unique combinations of model parameters, finding oscillations in only 0.2% of all simulations. Next, I examine the formulation of a critical model equation representing stream channel slope over the Strait of Gibraltar, concluding that a more realistic formulation would render sea-level limit cycles improbable, if not impossible, in the proposed model.
References
Andrews, E.R., Billen, M.I., 2009. Rheologic controls on the dynamics of slab detachment. Tectono-physics, 464(1-4), 60-69. DOI: 10.1016/j.tecto.2007.09.004
Baum, M., 2021a. markmbaum/messinian-salinity-crisis v1. Version v1. DOI: 10.5281/zenodo.4571688. url: https://github.com/markmbaum/messinian-salinity-crisis. January, 2021b, wordsworthgroup/libode v1.0.3. Version v1.0.3.
doi: 10.5281/zenodo.4429314. URL: https: //github.com/markmbaum/libode.
Commission Internationale pour l’Exploration Scientifique de la Méditerranée (CIESM), 2008. The Messinian Salinity Crisis
from Mega-deposits to Microbiology. A Consensus Report. In: Briand, F. (ed.). CIESM Workshop Monographs. Monaco, Commission Internationale pour l’Exploration Scientifique de la Méditerranée (CIESM), 16 bd de Suisse, MC-98000, 33, 1-168.
Coulson, S., Pico, T., Austermann, J., Powell, E., Moucha, R., Mitrovica, J., 2019. The role of isostatic adjustment and gravitational effects on the dynamics of the Messinian salinity crisis. Earth and Planetary Science Letters, 525, 115760, 1-9.
DOI: 10.1016/j.epsl.2019.115760
De Lange, G.J., Krijgsman, W., 2010. Messinian salinity crisis: A novel unifying shallow gypsum/deep dolomite formation mechanism. Marine Geology, 275(1-4), 273-277. DOI: 10.1016/j.margeo.2010.05.003.
Duggen, S., Hoernle, K., Morgan, J.P., 2003. Deep roots of the Messinian salinity crisis. Nature, 422, 602-606.
Duretz, T., Gerya, T.V., May, D.A., 2011. Numerical modelling of spontaneous slab breakoff and subsequent topographic
response. Tectonophysics, 502(1-2), 244-256. DOI: 10.1016/j.tecto.2010.05.024
EMODnet Bathymetry Consortium (2018). EMODnet Digital Bathymetry (DTM 2018). DOI: 10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6. Last access: June 2020. Website: https://sextant.ifremer.fr/record/18ff0d48-b203-4a65-94a9-
fd8b0ec35f6/
Garcia-Castellanos, D., Villaseñor, A., 2011. Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. Nature, 480(7377), 359-363. DOI: 10.1038/nature10651. Last accessed: 7 February 2020. Website: https://github.com/danigeos/asalted
Gargani, J., Rigollet, C., 2007. Mediterranean Sea level variations during the Messinian salinity crisis. Geophysical Research
Letters, 34(10), 19-26. DOI: 10.1029/2007GL029885
Gerya, T.V., Yuen, D.A., Maresch, W.V., 2004. Thermomechanical modelling of slab detachment. Earth and Planetary Science Letters, 226(1-2), 101-116. DOI: 10.1016/j.epsl.2004.07.022.
Hsü, K.J., Ryan, W.B.F., Cita, M.B., 1973. Late Miocene Desiccation of the Mediterranean. Nature, 242(5395), 240-244. DOI: 10.1038/242240a0
Hunter, J.D., 2007. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9.3, 90-95. DOI: 10.1109/MCSE.2007.55
Just, J., Hübscher, C., Betzler, C., Lüdmann, T., Reicherter, K., 2011. Erosion of continental margins in the Western Mediterranean due to sea-level stag-nancy during the Messinian Salinity Crisis. Geo-Marine Letters, 31(1), 51-64. DOI: 10.1007/s00367-010-0213-010-0213-z
Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J., Wilson, D.S., 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature, 400(6745), 652-655. DOI: 10.1038/23231
Krijgsman, W., Fortuin, A.R., Hilgen, F.J., Sierro, F.J., 2001. Astrochronology for the Messinian Sorbas basin (SE Spain) and orbital (pre-cessional) forcing for evaporite cyclicity. Sedimentary Geology, 140(1-2), 43-60. DOI: 10.1016/S0037-
(00)00171-8.
Lugli, S., Manzi, V., Roveri, M., Schreiber, C., 2010. The Primary Lower Gypsum in the Mediterranean: A new facies interpretation for the first stage of the Messinian salinity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 297(1), 83-99. DOI: 10.1016/j.palaeo.2010.07.017
Manzi, V., Gennari, R., Hilgen, F., Krijgsman, W., Lugli, S., Roveri, M., Sierro, F., 2013. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova, 25(4), 315-322. DOI: 10.1111/ter.12038
Meijer, P., Krijgsman, W., 2005. A quantitative analysis of the desiccation and re-filling of the Mediterranean during the Messinian Salinity Crisis. Earth and Planetary Science Letters, 240(2), 510-520. DOI: 10.1016/j.epsl.2005.09.029
NOAA, 2010. Volumes of the World’s Oceans from ETOPO1. Last accessed: 4 June 2020. Website: https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html, 2012.
Hypsographic Curve of Earth’s Surface from ETOPO1. Last accessed: 4 June 2020. Website: https://www.ngdc.noaa.gov/mgg/global/etopo1_surface_histogram.html
Ohneiser, C., Florindo, F., Stocchi, P., Roberts, A., DeConto, R., Pollard, D., 2015. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding. Nature Communications, 6(1), 8765, 1-10. DOI: 10.1038/ncomms9765
Rohling, E., Schiebel, R., Siddall, M., 2008. Controls on Messinian Lower Evaporite cycles in the Mediterranean. Earth and Planetary Science Letters, 275(1-2), 165-171. DOI: 10.1016/j.epsl.2008.08.022
Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., Sierro, F., Bertini, A., Camerlenghi, A., De Lange, G., Gobers,
R., Hilgen, F., Hubscher, C., Meijer, P., Stoica, M., 2014. The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25-58. DOI: 10.1016/j.margeo.2014.02.002
Simon, D., Meijer, P., 2017. Salinity stratification of the Mediterranean Sea during the Messinian crisis: A first model analysis. Earth and Planetary Science Letters, 479, 366-376. DOI: 10.1016/j.epsl.2017.09.045
Strogatz, S.H., 1994. Nonlinear Dynamics And Chaos. New York (NY), Perseus Books Publishing L.L.C., 498.
Turowski, J.M., Lague, D., Hovius, N., 2007. Cover effect in bedrock abrasion: A new derivation and its implications for the modeling of bedrock channel morphology. Journal of Geophysical Research, 112.F4, F04006. DOI: 10.1029/2006JF000697
Verner, J.H., 2010. Numerically optimal Runge–Kutta pairs with interpolants. Numerical Algorithms 53(2-3), 383-396. DOI:
1007/s11075-009-9290-3
Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,
Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors, 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261-272. DOI: 10.1038/s41592-019-0686-2
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Geologica Acta
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
Geologica Acta is the property of the UB, GEO3BCN, IDAEA and UAB. Geologica Acta must be cited for any partial or full reproduction. Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows anyone to reproduce and disseminate the content of the journal and even make derivative works crediting authorship and provenance and distributing possible derivative works under the same or an equivalent license.
Author Rights
Authors retain the copyright on their papers and are authorized to post them on their own web pages or institutional repositories. The copyright was retained by the journal from the year 2003 until 2009. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission from Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.