The enriched Variscan lithosphere of NE Iberia: data from postcollisional Permian calc-alkaline lamprophyre dykes of Les Guilleries




Calc-alkaline lamprophyre, post-collisional dykes, Sr-Nd isotopes, Les Guilleries Massif, Catalan Coastal Ranges, Variscan Orogeny


Post-collisional mafic dykes crosscut the Paleozoic metamorphic basement and late-Variscan plutons in Les Guilleries massif (Catalan Coastal Ranges, NE Iberia). The predominance of mafic phenocrysts, porphyritic texture, abundant amphibole, high MgO and volatile content, together with crustal-like trace-element patterns indicate that the dykes correspond to calc-alkaline lamprophyres, mainly spessartites. Their enrichment in LILE, HFSE and REE and initial Sr-Nd isotopic compositions (87Sr/86Sri between 0.70851 and 0.71127, epsilon Ndi between -5.23 and -4.63) are consistent with an enriched subcontinental lithospheric mantle source. U-Pb ages of matrix titanite crystals yield concordia ages of 262±7Ma, congruent with crosscutting relationships. Postmagmatic processes are evidenced by intense chloritization and albitization of the lamprophyres, together with systematic variations of Na2O vs SiO2, K2O, CaO, Ba, Rb, Cs, Pb, Sr, Tl, and Zn, and possibly the removal of F. The geochemical and geochronological data support an orogenic geochemical affinity, in accordance with the transitional tectonic regime between Variscan compression/transpression and post-collisional transtension/extension, related to the fragmentation of Pangea and thinning of the lithosphere. The lamprophyre dykes studied could represent the youngest pulse of Variscan orogenic magmatism and, therefore, mark its end in NE Iberia before the onset of the generalized Triassic extension.


Aldanmaz, E., Pearce, J., Thirlwall, M., Mitchell, J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102, 67-95.

Arche, A., López-Gómez, J., 1996. Origin of the Permian-Triassic Iberian Basin, central-eastern Spain. Tectonophysics, 266,


Awdankiewicz, M., 2007. Late Paleozoic lamprophyres and associated mafic subvolcanic rocks of the Sudetes (SW Poland): petrology, geochemistry and petrogenesis. Geologia Sudetica, 39, 11-97.

Ayora, C., Soler, A., Melgarejo, J.C., 1990. The Hercynian ore deposits from the Catalonian Coastal Ranges. Acta Geologica

Hispanica, 25, 65-73.

Bea, F., Montero, P., Molina, J.F., 1999. Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila batholith: A model for the generation of Variscan batholiths in Iberia. Journal of Geology, 107, 399-419.

Bonin, B., 1987. From orogenic to anorogenic magmatism: a petrological model for the transition calc-alkaline-alkaline complexes. Revista Brasileira de Geociencias, 17(4), 366-371.

Broska, I., Petrík, I., 2014. Accessory phases in the genesis of the igneous rocks. In: Kumar, S., Singh, R.N. (eds.). Modelling of Magmatic and Allied Processes, 109-149. DOI: 10.1007/978-3-319-06471-0_6

Bussy, F., Hernandez, J., Von Raumer, J., 2000. Bimodal magmatism as a consequence of the post-collisional readjustment of the thickened Variscan continental lithosphere (Aiguilles RougesMont Blanc Massifs, Western Alps). Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2), 221-233.

Butjosa, L., Enrique, P., Galán, G., 2013. Las hornblenditas, gabros y dioritas del Macizo del Montnegre (Barcelona, Cordilleras Costero Catalanas). Geogaceta, 54, 35-38.

Campá-Viñeta, J.A., Montoriol-Pous, J., 1974. Mineralogénesis del yacimiento de Osor (Gerona). Acta Geologica Hispanica,

, 139-141.

Castro, A., Corretgé, L.G., de la Rosa, J.D., Fernández, C., López, S., García-Moreno, O., Chacón, H., 2003. The appinitemigmatite complex of Sanabria, NW Iberian Massif, Spain. Journal of Petrology, 44, 1309-1344.

Cortesogno, L., Cassinis, G., Dallagiovanna, G., Gaggero, L., Oggiano, G., Ronchi, A., Seno, S., Vanossi, M., 1998. The Variscan post-collisional volcanism in Late Carboniferous Permian sequences of Ligurian Alps, Southern Alps and Sardinia (Italy): a synthesis. Lithos, 45(1), 305-328.

Debon, F., Zimmermann, J.L., 1993. Mafic dykes from some plutons of the Western Pyrenean Axial Zone (France, Spain): markers of the transition from Late-Hercynian to early Alpine events. Schweizerische Mineralogische und Petrographische

Mitteilungen, 73, 421-433.

DePaolo, D.J., 1980. Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochimica et Cosmochimica Acta, 44(8), 1185-1196.

Dijkstra, A.H., Hatch, C., 2018. Mapping a hidden terrane boundary in the mantle lithosphere with lamprophyres. Nature

Communications, 9, 1-8. DOI: 10.1038/s41467-018-06253-7

Durán, H., 1985. El Paleozóico de les Guilleries. Doctoral Thesis. Bellaterra (Spain), Universitat Autònoma de Barcelona, 243pp.

Durán, H., 1990. El Paleozoico de les Guilleries. Acta Geologica Hispanica, 25, 83-103.

Elter, F.M., Corsi, B., Cricca, P., Muzio, G., 2004. The southwestern Alpine foreland: correlation between two sectors of the Variscan chain belonging to ‘stable Europe’: Sardinia (-) Corsica and the Maures Massif (south-eastern France). Geodinamica Acta, 17, 31-40.

Enrique, P., 1990. The Hercynian intrusive rocks of the Catalonian Coastal Ranges (NE Spain). Acta Geologica Hispanica, 25,


Enrique, P., 2009. Las espesartitas, camptonitas y bostonitas del complejo intrusivo de Aiguablava (Cadenas Costeras Catalanas): Cartografía y composición. Geogaceta, 47, 125-128.

Esteve, S., Sunyer, J., Culí, L., Cirés, J., Alías, G., 2016. El complejo intrusivo diorítico-gabroico de Susqueda (Macizo del Montseny-Guilleries, Cataluña): unidades litológicas y características petrográficas. Geogaceta, 60, 99-102.

Esteve, S., Enrique, P., Alías, G., 2018. Relaciones intrusivas y cronología relativa del plutón básico de Susqueda con las rocas metamórficas encajantes (Cordillera Prelitoral Catalana). Geogaceta, 63, 107-110.

Fàbrega, C., Parcerisa, D., Thiry, M., Franke, C., Gurenko, A., Gómez-Gras, D., Solé, J., Travé, A., 2019. Permian-Triassic red-stained albitized profiles in the granitic basement of NE Spain: evidence for deep alteration related to the Triassic paleosurface. International Journal of Earth Sciences, 108, 2325-2347.

Foley, S.F., 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28, 435-453.

Fowler, M.B., Henney, P.J., 1996. Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba-Sr granite genesis. Contributions to Mineralogy and Petrology, 126, 199-215.

Galán, G., Enrique, P., Butjosa, L., Fernández-Roig, M., 2017. Spinels of Variscan olivine hornblendites related to the Montnegre granitoids revisited (NE Spain): petrogenetic evidence of mafic magma mixing. Geologica Acta, 15(4), 323-336.

Innocent, C., Briqueu, L., Cabanis, B., 1994. Sr-Nd isotope and trace-element geochemistry of late Variscan volcanism in the Pyrenees: Magmatism in post-orogenic extension? Tectonophysics, 238, 161-181.

Jung, C., Jung, S., Hoffer, E., Berndt, J., 2006. Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel, Germany. Journal of Petrology, 47, 1637-1671.

Krmíček, L., Romer, R., Ulrych, J., Glodny, J., Prelević, D., 2015. Petrogenesis of orogenic lamproites of the Bohemian Massif:

Sr-Nd-Pb-Li isotope constraints for Variscan enrichment of ultra-depleted mantle. Gondwana Research, 35, 198-216.

Lago, M., Arranz, E., Pocoví, A., Galé, C., Gil-Imaz, A., 2004. Permian magmatism and basin dynamics in the Southern Pyrenees: a record of transition from late Variscan transtension to early Alpine extension. In: Wilson, M., Neumann, E.-R., Davies, G.R., Timmerman, M.J., Heeremans, M., Larsen, B.T. (eds.). Permo- Carboniferous magmatism and rifting in Europe. London, Geological Society, 223 (Special Publications), 439-464.

Lago, M., de la Horra, R., Ubide., T., Galé., C., Galán-Abellán., B., Barrenechea., J.F., López-Gómez., J., Benito., M.I., Arche., A., Alonso-Azcárate, J., Luque., F.J., Timmerman., M.J., 2012. First report of a Middle-Upper Permian magmatism in the SE Iberian Ranges: characterisation and comparison with coeval magmatisms in the western Tethys. Journal of Iberian Geology, 38(2), 331-348.

Losantos, M., Montaner, J., Solà, J., Mató, E., Sampsó, J.M., Picart, J., Calvet, F., Enrique, P., Ferrés, M., Solé, J., 2000. Mapa Geològic de Catalunya 1:25.000. Palafrugell 335-1-1 (79-25). Barcelona, Servei Geològic de Catalunya (ICC).

le Maitre, R., Streckeisen, A., Zanettin, B., Le Bas, M., Bonin, B., Bateman, P. (eds.), 2002. Igneous Rocks: A Classification and

Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks (2nd ed.). Cambridge, Cambridge University Press, 19. DOI: 10.1017/CBO9780511535581

Martínez, F.J., Reche, J., Iriondo, A., 2008. U-Pb SHRIMP-RG zircon ages of Variscan igneous rocks from the Guilleries massif (NE Iberia pre-Mesozoic basement): Geological implications. Comptes Rendus Geoscience, 340, 223-232.

Martínez, F.J., Iriondo, A., Dietsch, C., Aleinikoff, J.N., Peucat, J.J., Cirés, J., Reche, J., Capdevila, R., 2011. U-Pb SHRIMPRG zircon ages and Nd signature of Lower Paleozoic riftingrelated magmatism in the Variscan basement of the eastern Pyrenees. Lithos, 127, 10-23.

Martínez-Poza, A.I., Druguet, E., Castaño, L.M., Carreras, J., 2014. Dyke intrusion into a pre-existing joint network: The Aiguablava lamprophyre dyke swarm (Catalan Coastal Ranges). Tectonophysics, 630, 75-90.

McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chemical Geology, 120, 223-253.

Murphy, J., 2013. Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of

magma. Earth-Science Reviews, 119,35-59.

Orejana, D., Villaseca, C., Paterson, B.A., 2006. Geochemistry of pyroxenitic and hornblenditic xenoliths in alkaline lamprophyres from the Spanish Central System. Lithos, 86, 167-196.

Orejana, D., Villaseca, C., Billström, K., Paterson, B.A., 2008. Petrogenesis of Permian alkaline lamprophyres and diabases

from the Spanish Central System and their geodynamic context within western Europe. Contributions to Mineralogy and Petrology, 156, 477-500.

Parcerisa, D., Thiry, M., Schmitt, J.M., 2010. Albitisation related to the Triassic unconformity in igneous rocks of the Morvan

Massif (France). International Journal of Earth Sciences, 99, 527-544.

Pearce, J., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14-48.

Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81.

Peng, P., Ernst, R., Hou, G., Söderlund, U., Zhang, S.H., Hamilton, M., Xu, Y.G., Denyszyn, S., Mège, D., Pisarevsky, S., Srivastava, R., Kusky, T., 2016. Dyke swarms: keys to paleogeographic reconstructions. Science Bulletin, 61(21), 1669-1671. DOI: 10.1007/s11434-016-1184-x

Pereira, M.F., Castro, A., Chichorro, M., Fernández, C., DíazAlvarado, J., Martí, J., Rodríguez, C., 2014. Chronological link between deep-seated processes in magma chambers and eruptions: Permo-Carboniferous magmatism in the core of Pangaea (Southern Pyrenees). Gondwana Research, 25, 290-308.

Perini, G., Cebria, J.M., López-Ruiz, J., Doblas, M., 2004. Carboniferous-Permian mafic magmatism in the Variscan belt of Spain and France: implications for mantle sources. London, Geological Society, 223 (Special Publications), 415-438.

Prelević, D., Foley, S.F., Cvetkovic, V., Romer, R.L., 2004. Origin of Minette by Mixing of Lamproite and Dacite Magmas in Veliki Majdan, Serbia. Journal of Petrology, 45(4), 759-792.

Reche, J., Martínez, F.J., 2002. Evolution of bulk composition, mineralogy, strain style and fluid flow during an HT-LP metamorphic event: sillimanite zone of the Catalan Coastal Ranges, Variscan basement, NE Iberia. Tectonophysics, 348, 111-134.

Riesco, M., Stüwe, K., Reche, J., Martínez, F.J., 2004. Silica depleted melting of pelites. Petrogenetic grid and application to the Susqueda Aureole, Spain. Journal of Metamorphic Geology, 22, 475-494.

Roberts, M., Pin, C., Clemens, J., Paquette, J.L., 2000. Petrogenesis of Mafic to Felsic Plutonic Rock Associations: the Calcalkaline Querigut Complex, French Pyrenees. Journal of Petrology, 41(6), 809-844.

Rock, N.M.S., 1991. Lamprophyres. London, Blackie, 285pp.

Rollinson, H., 1993. Using geochemical data: Evaluation, presentation, interpretation. New York, Longman Scientific and Technical, Wiley, 352.

Ronca, S., Del Moro, A., Traversa, G., 1999. Geochronology, SrNd isotope geochemistry and petrology of Late-Hercynian

dyke magmatism from Sarrabus (SE Sardinia). Periodico di Mineralogia, 68, 231-260.

Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. In: Rudnick, R.L. (ed.). The Crust. Treatise on Geochemistry, Oxford, Elsevier, 3, 1-64.

Scarrow, J.H., Molina, J.F., Bea, F. Montero, P., 2009. Within-plate calc-alkaline rocks: Insights from alkaline mafic magmasperaluminous crustal melt hybrid appinites of the Central Iberian Variscan continental collision. Lithos, 110, 50-64.

Sebastian, A., Reche, J., Duran, H., 1990. Hercynian metamorphism in the Catalonian coastal ranges. Acta Geologica Hispanica, 255, 31-32.

Seifert, T., 2008. Metallogeny and Petrogenesis of Lamprophyres in the Mid-European Variscides. Amsterdam, IOS Press, 303.

Soder, C., 2017. Geochemistry and petrology of lamprophyres from the Hellenides and the European Variscides. PhD Thesis. Heidelberg (Germany), University of Heidelberg, 201pp. DOI: 10.11588/heidok.00023679

Solé, J., Cosca, M., Sharp, Z., Enrique, P., 2002. 40Ar/39Ar Geochronology and stable isotope geochemistry of LateHercynian intrusions from north-eastern Iberia with implications for argon loss in K-feldspar. International Journal of Earth Sciences, 91, 865-881.

Spišiak, J., Vetráková, L., Mikuš, T., Chew, D., Ferenc, S., Šimonová, V., Siman, P., 2019. Mineralogy and geochronology of calc-alkaline lamprophyres from the Nízke Tatry Mts. Crystalline complex (Western Carpathians). Mineralia Slovaca, 51, 61-78.

Srivastava, R., Ernst, R., Peng, P., 2019. Dyke Swarms of the World: A Modern Perspective. Singapore, Springer, 263-314.

DOI: 10.1007/978-981-13-1666

Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. London, Geological Society, 42 (Special Publications), 313-345.

Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., Dragusanu, C., 2000. JNdi-1: a neodymium isotopic reference in consistency with La Jolla neodymium. Chemical Geology, 168, 279-281.

Ubide, T., Lago, M., Arranz, E., Galé, C., Larrea, P., 2010. The lamprophyric sub-vertical dyke swarm from Aiguablava (Catalonian Coastal Ranges): Petrology and composition. Geogaceta, 49, 83-86.

Ubide, T., 2013. The Cretaceous alkaline magmatism in northeast Iberia: igneous processes and geodynamic implications. Doctoral Thesis. Zaragoza (Spain), University of Zaragoza, 193pp.

Wilson, M., Neumann, E.R., Davies, G., Timmerman, M., Heeremans, M., Larsen, B., 2004. Permo-Carboniferous Magmatism and Rifting in Europe. London, Geological Society, 223 (Special Publications), 1-10. DOI: 10.1144/GSL.SP.2004.223.01.01

Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343.