Statistical trends in culture methods of endolithic bacteria extracted from Quartz, K-Feldspar (Jurassic) and Calcite (Quaternary) in semi-arid areas in Colombia


  • Julian Andreas Corzo-Acosta National University of Colombia
  • Jimmy Antonio Corzo National University of Colombia



Endolithic microbial communities, Geomicrobiology, Microbial ecology, Quartz, K-feldspar, Calcite


Microbial endolithic communities are ubiquitous in many deserts around the globe. They have been found in many different lithologies, including quartz, plagioclase and calcite. The use of culture methods in geomicrobiology is important because most bacteria are non-cultivable, which makes it very difficult to characterize and describe them. In this study, endolithic bacteria and yeast were cultured in three rock-forming minerals (quartz, K-feldspar and calcite) with standard culture methodologies. It was demonstrated that these endolithic microorganisms could grow in noble agar enriched with a mineral different from the one they were extracted. Microbes were also cultured in a nutritive broth under some physicochemical factors (sugar, salt, pH and temperature) to study their possible tolerance to different ecological conditions. These results were combined with Multiple Factorial Analysis to identify statistical trends between their morphologies (pigment, size and Gram stain), chemical elements and their tolerance to physicochemical factors. Our results show that it might exist a relationship between pigments in microbial colonies,their tolerance to pH9, salinity and temperature conditions; and that Gram-negative bacillus might have a high adaptive ability to different enriched minimum media. Characterizing microbial communities associated with lithic substrates in the laboratory could be helpful for future planning in the search for life on Mars.


Albesiano, S., Rangel-Churio, J.O., Cadena, A., 2003. La vegetación del cañón del río Chicamocha (Santander, Colombia). Caldasia, 25(1), 73-99. DOI: 10.15446/caldasia

Ascaso, C., 2002. Ecología microbiana de sustratos líticos. Ciencia y medio ambiente, 90-103. Last accessed: March 2021. Website:

Bandfield, J.L., Hamilton, V.E., Christensen, P.R., McSween Jr., H.Y., 2004. Identification of quartzofeldspathic materials on

Mars. Journal of Geophysical Research: Planets, 109(4), E10. DOI:

Bell, R.A., 1993. Cryptoendolithic algae of hot semiarid lands and deserts. Journal of Phycology, 29(2), 133-139. DOI:

Bhattacharjee, K., Joshi, S.R., 2016. A selective medium for recovery and enumeration of endolithic bacteria. Journal of microbiological methods. 129, 44-54. DOI:

Böttger, U., de Vera, J.P., Fritz, J., Weber, I., Hübers, H.W., SchulzeMakuch, D., 2012. Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planetary and Space Science, 60(1), 356-362. DOI:

Boyd, E.S., Cummings, D.E., Geesey, G.G., 2007. Mineralogy influence’s structure and diversity of bacterial communities associated with geological substrata in a pristine aquifer. Microbial Ecology, 54(1), 170- 182. DOI:

Breznak, J.A., Costilow, R.N., 2007. Physicochemical factors in growth. In ¿? Methods for General and Molecular Microbiology, 309-329.

Bungartz, F., Garvie, L.A., Nash, T.H., 2004. Anatomy of the endolithic Sonoran Desert lichen Verrucaria rubrocincta Breuss: implications for biodeterioration and biomineralization. The Lichenologist, 36(1), 55-73. DOI:

Carson, J.K., Campbell, L., Rooney, D., Clipson, N., Gleeson, D.B., 2009. Minerals in soil select distinct bacterial communities in their microhabitats. Federation of european microbiological societies( FEMS) Microbiology Ecology, 67(3), 381-388. DOI:

Carter, J., Poulet, F., 2013. Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains.

Nature Geoscience, 6(12), 1008-1012. DOI:

Certini, G., Campbell, C.D., Edwards, A.C., 2004. Rock fragments in soil support a different microbial community from the fine earth. Federation of european microbiological societies(FEMS) Soil Biology and Biochemistry, 36(7), 1119-1128. DOI:

Cockell, C., Osinski, G., Lee, P., 2003. The impact crater as a habitat: effects of impact processing of target materials. Astrobiology, 3181-191. DOI: https://doi. org/10.1089/153110703321632507

Cockell, C.S., Stokes, M.D., 2004. Widespread colonization by polar hypoliths. Nature, 431(7007), 414-414. DOI:

Cockell, C.S., McKay, C.P., Warren-Rhodes, K., Horneck, G., 2008. Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts–Dosimetric experiments in the hyperarid core of the Atacama Desert. Journal of Photochemistry and Photobiology B: Biology, 90(2), 79-87. DOI:

Cockell, C.S., Olsson, K., Knowles, F., Kelly, L., Herrera, A., Thorsteinsson, T., Marteinsson, V., 2009. Bacteria in weathered basaltic glass, Iceland. Geomicrobiology Journal, 26(7), 491-507. DOI:

Cockell, C.S., Osinski, G.R., Banerjee, N.R., Howard, K.T., Gilmour, I., Watson, J.S., 2010. The microbe–mineral evaporite. Geobiology, 8(4), 293-308. DOI:

Corzo-Acosta J.A., 2018. Bacterias endolíticas cultivables en minerales (Cuarzo, Feldespato y Calcita) provenientes de muestreos geológicos en áreas de Villa de Leyva, Boyacá y Pescadero, Santander (Colombia). Master Thesis. National University of Colombia. Bogotá, Last accessed: 2 Dec 2022 Website: Cowan, D.A., Khan, N., Pointing, S.B., Cary, S.C., 2010. Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarctic Science, 22(6), 714-720. DOI:

Direito, S.O., Marees, A., Röling, W.F., 2012. Sensitive life detection strategies for low-biomass environments: optimizing extraction of nucleic acids adsorbing to terrestrial and Mars analogue minerals. Federation of european microbiological societies(FEMS). Microbiology Ecology, 81(1), 111-123. DOI:

Dong, H., Rech, J.A., Jiang, H., Sun, H., Buck, B.J., 2007. Endolithic cyanobacteria in soil gypsum: Occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. Journal of Geophysical Research: Biogeosciences, 112, G2. DOI:

Dussault, H.P., 1955. An improved technique for staining red halophilic bacteria. Journal of Bacteriology, 70(4), 484-485.

Ehrenfreund, P., Röling, W.F.M., Thiel, C.S., Quinn, R., Sephton, M.A., Stoker, C., Kotler J.M.,Direito, S.O.L., Martins, Z., Orzechowska, G.E., Kidd7, R.D., van Sluis, C.A and Foing, B.H., 2011. Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota. International Journal of Astrobiology, L.10(3), 239-253. DOI:

Ehrlich, H.L., Newman, D.K., Kappler, A., 2015. Geomicrobiology M. Dekker, 768pp.

Fan, M., Lyu, P., Su, Y., Du, K., Zhang, Q., Zhang, Z., Dai, S., Hong, T., 2021. The Mars Orbiter Subsurface Investigation Radar (MOSIR) on China’s Tianwen-1 Mission. Space Science Reviews, 217(1), 1-17.

Fischer, G., Lüdders, P., 2002. Efecto de la altitud sobre el crecimiento y desarrollo vegetativo de la uchuva (Physalis peruviana L.). Bogotá, Revista Comalfi, 29(1), 1-10. Last accessed: December 2022 Website:

Friedmann, E.I., 1980. Endolithic microbial life in hot and cold deserts. Limits of Life, 10, 223-235. DOI:

Friedmann, E.I., Weed, R., 1987. Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science, 236(4802), 703-705. DOI: 10.1126/science.11536571

Gaylarde, C., Baptista-Neto, J.A., Ogawa, A., Kowalski, M., Celikkol-Aydin, S., Beech, I., 2017. Epilithic and endolithic microorganisms and deterioration on stone church facades subject to urban pollution in a sub-tropical climate. Biofouling,

(2), 113-127. DOI:

Gleeson, D.B., Kennedy, N.M., Clipson, N., Melville, K., Gadd, G.M., McDermott, F.P., 2006. Characterization of bacterial community structure on a weathered pegmatitic granite. Microbial Ecology, 51(4), 526-534. DOI:

Guillitte, O., 1995. Bioreceptivity: a new concept for building ecology studies. Science of the total Total Environment, 167(1-3), 215-220. DOI:

Haltigin, T., Lange, C., Mugnuolo, R., Smith, C., & iMARS Working Group (2016). (2018). iMARS Phase 2: a draft mission architecture and science management plan for the return of samples from Mars Phase 2 Report of the International Mars Architecture for the Return of Samples (iMARS) Working Group. Astrobiology, 18(S1). DOI:

Herrera, A., Cockell, C.S., Self, S., Blaxter, M., Reitner, J., Thorsteinsson, T., Arp, G., Dröse, W., Tindle, A.G., 2009. A cryptoendolithic community in volcanic glass. Astrobiology, 9(4), 369-381. DOI:

Horgan, B.H., Anderson, R.B., Dromart, G., Amador, E.S., Rice, M.S., 2020. The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars. Icarus, 339, 113526. DOI:

Hughes, K.A., Lawley, B., 2003. A novel Antarctic microbial endolithic community within gypsum crusts. Environmental Microbiology, 5(7), 555-565. DOI:

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) Atlas Interactivo-Radiación. Obtenido de Atlas Interactivo - Radiación. Last Accessed: 8 Janurary 2021. Web:

Kapitulčinová, D., Cockell, C.S., Patel, M., Ragnarsdottir, K.V., 2015. The interlayer regions of sheet silicates as a favorable habitat for endolithic microorganisms. Geomicrobiology Journal, 32(6), 530-537. DOI:

Kelly, L.C., Cockell, C.S., Herrera-Belaroussi, A., Piceno, Y., Andersen, G., DeSantis, T., Brodie, E., Thorsteinsson, T., Marteinsson, V., Poly, F., LeRoux , X. (2011). Bacterial diversity of terrestrial crystalline volcanic rocks, Iceland. Microbial Ecology, 62(1), 69-79. DOI:

Lacap, D.C., Warren-Rhodes, K.A., McKay, C.P., Pointing, S.B., 2011. Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile. Extremophiles, 15(1), 31-38. DOI:

van der Lelij, R., Spikings, R., Gerdes, A., Chiaradia, M., Vennemann, T., Mora, A., 2019. Multi-proxy isotopic tracing of magmatic sources and crustal recycling in the Palaeozoic to Early Jurassic active margin of North-Western Gondwana. Gondwana Research, 66, 227-245. DOI:

Makhalanyane, T.P., Pointing, S.B., Cowan, D.A., 2014. Lithobionts: cryptic and refuge niches. In: Cowan, D.A. (ed.). Antarctic

Terrestrial Microbiology. Berlin, Heidelberg, Springer, 163-179. DOI:

Mauck, B.S., Roberts, J.A., 2007. Mineralogic control on abundance and diversity of surface-adherent microbial communities. Geomicrobiology Journal, 24(3-4), 167-177. DOI:

McKay, C.P., Friedmann, E.I., Gómez-Silva, B., CáceresVillanueva, L., Andersen, D.T., Landheim, R., 2003. Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Nino of 1997–1998. Astrobiology, 3(2), 393-406.

McNamara, C.J., Perry, T.D., Bearce, K.A., Hernandez-Duque, G., Mitchell, R., 2006. Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microbial Ecology, 51(1), 51-64. DOI:

Meslier, V., Casero, M.C., Dailey, M., Wierzchos, J., Ascaso, C., Artieda, O., McCullough, P.R., DiRuggiero, J., 2018. Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environmental microbiology, 20(5), 1765-1781.

Navas, J., 1962. Geología del Carbonífero al N. de Bucaramanga. Boletín de Geología, 11, 23-34.

Omelon, C.R., Pollard, W.H., Ferris, F.G., 2006. Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biology, 30(1), 19-29. DOI:

Omelon, C.R., Pollard, W.H., Ferris, F.G., 2007. Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats. Microbial Ecology, 54(4), 740-752. DOI:

Oren, A., Kühl, M., Karsten, U., 1995. An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Marine Ecology, Progress Series, 128, 151-159. DOI: 10.3354/meps128151

Orosei, R., Lauro, S.E., Pettinelli, E., Cicchetti, A., Coradini, M., Cosciotti, B., Paolo, F. Di., Flamini, E.,Mattei, E., Pajola, M., Soldovieri, F., Cartacci, M., Cassenti, F., Frigeri, A., Giuppi, S., Martufi, R., Masdea, A., Mitri, , G., Nenna, , C., Noschese, R., Restano, M., Seu. R., 2018. Radar evidence of subglacial liquid water on Mars. Science, 361(6401), 490-493. DOI: 10.1126/science.aar7268

Páramo-Fonseca, M.E., O’Gorman, J.P., Gasparini, Z., Padilla, S., Parra-Ruge, M.L., 2019. A new late Aptian elasmosaurid from the Paja Formation, Villa de Leiva, Colombia. Cretaceous Research, 99, 30-40. DOI:

Patarroyo, P., Murillo, M.M., 1997. Nuevas Consideraciones en torno al Cabeceo del Anticlinal de Arcabuco, en cercanías de Villa de Leyva-Boyacá. Geología Colombiana, 22, 27-34. DOI: 10.15446/gc

Patarroyo, P., 2008. La Formacion Ritoque en la zona de Vélez (Santander-Colombia). Geología Colombiana, 33, 109-110. ISSN 0072-0992

R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Ramsey, M.H., Potts, P.J., Webb, P.C., Watkins, P., Watson, J.S., Coles, B.J., 1995. An objective assessment of analytical method precision: comparison of ICP-AES and XRF for the analysis of silicate rocks. Chemical Geology, 124(1-2), 1-19. DOI:

Rogers, J.R., Bennett, P.C., 2004. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chemical Geology, 203(1-2), 91-108. DOI:

Rojas, A., Sandy, M.R., 2019. Early Cretaceous (Valanginian) brachiopods from the Rosablanca Formation, Colombia, South

America: Biostratigraphic significance and paleogeographic implications. Cretaceous Research, 96, 184-195. DOI:

Rondanelli, R., Molina, A., Falvey, M., 2015. The Atacama surface solar maximum. Bulletin of the American Meteorological Society, 96(3), 405-418. DOI:

Schemm-Gregory, M., Rojas-Briceño, A., Patarroyo, P., Jaramillo, C., 2012. First report of Hadrosia Cooper, 1983 in South America and its biostratigraphical and palaeobiogeographical implications. Cretaceous Research, 34, 257-267. DOI:

Schlesinger, W.H., Pippen, J.S., Wallenstein, M.D., Hofmockel, K.S., Klepeis, D.M., Mahall, B.E., 2003. Community composition

and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology, 84(12), 3222-3231. DOI:

Selbmann, L., De Hoog, G.S., Mazzaglia, A., Friedmann, E.I., Onofri, S., 2005. Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Studies in Mycology, 51(1), 1-32.

Siebert, J., Hirsch, P., Hoffmann, B., Gliesche, C.G., Peissl, K., Jendrach, M., 1996. Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard Range): diversity, properties and interactions. Biodiversity & Conservation, 5(11), 1337-1363. DOI:

Smith, M.C., Bowman, J.P., Scott, F.J., Line, M.A., 2000. Sublithic bacteria associated with Antarctic quartz stones. Antarctic Science, 12(2), 177-184. DOI:

Smith, M.R., Bandfield, J.L., 2012. Geology of quartz and hydrated silica-bearing deposits near Antoniadi Crater, Mars. Journal of Geophysical Research: Planets, 117(E6), 177-184. DOI:

Stomeo, F., Valverde, A., Pointing, S.B., McKay, C.P., WarrenRhodes, K.A., Tuffin, M.I., Seely, M., Cowan, D.A., 2013. Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles, 17(2), 329-337. DOI:

Tang, Y., Cheng, J.Z., Lian, B., 2016. Characterization of endolithic culturable microbial communities in carbonate rocks from a typical karst canyon in Guizhou (China). Polish Journal of Microbiology, 65(4), 413-423.

Vargas, M., Patarroyo, P.C., 2014. Caracterización Geológica Del Travertino Localizado Al Noroccidente Del Municipio De Pesca, Boyacá. Universidad Nacional de Colombia. Unpublished Bachelor Thesis. National University of Colombia. Bogotá. Last accessed: 2 December 2022. Website:

Vítek, P., Ascaso, C., Artieda, O., Wierzchos, J., 2016. Raman imaging in geomicrobiology: endolithic phototrophic microorganisms in gypsum from the extreme sun irradiation area in the Atacama Desert. Analytical and Bioanalytical Chemistry, 408(15), 4083-4092. DOI:

Warren-Rhodes, K.A., Rhodes, K.L., Pointing, S.B., Ewing, S.A., Lacap, D.C., Gomez-Silva, B., Amudson, R., Friedmann, E.I., McKay, C.P., 2006. Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microbial Ecology, 52(3), 389-398. DOI:

Warren-Rhodes, K.A., Kevin, L.R., Boyle, L.N., Pointing, S.B., Chen, Y., Liu, S., Zhu, P., McKay, C.P., 2007. Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. Federation of european microbiological societies (FEMS) Microbiology Ecology, 61(3), 470-482. DOI: 6941.2007.00351.x

Whitmeyer, S.J., Mogk, D.W., Pyle, E.J., 2009. An introduction to historical perspectives on and modern approaches to field geology education. Geological Society of America Special Papers, 461, vii-ix.

Wierzchos, J., Ascaso, C., McKay, C.P., 2006. Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology, 6(3), 415-422. DOI:

Wierzchos, J., Cámara, B., de Los Rios, A., Davila, A.F., Sánchez Almazo, I.M., Artieda, O., Wierzchos, K., Gómez-Silva, B., McKay C., Ascaso, C., 2011. Microbial colonization of Casulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology, 9(1), 44-60. DOI:

Wierzchos, J., Ríos, A.D.L., Ascaso, C., 2012. Microorganisms in desert rocks: the edge of life on Earth. International Microbiology 15, 173-183. DOI:

Wierzchos, J., Casero, M.C., Artieda, O., Ascaso, C., 2018. Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert. Current Opinion in Microbiology, 43, 124-131. DOI:

Williams, H., Turner, F., Gilbert, Ch., 1958. An introduction to the study of rocks in thin sections. W.H. Freeman and Company, San Francisco, 406pp.

Zapata, G., Correa, A., Rodríguez, G., Arango, M., 2016. Catálogo de unidades litoestratigráficas de Colombia. Granito de Pescadero, (Cordillera Oriental Departamento Santander). Servicio Geológico Colombiano, 55pp.