Distribution and provenance of heavy minerals from recent sediments of Green Lake, North Brazil, revisited with multivariate and geostatistical analysis

Authors

  • Anne Caroline S. Ribeiro Universidade Federal Oeste do Pará - UFOPA, Campus Tapajós, Rua Vera Paz, S/N, Salé - Santarém/PA, Brasil
  • Livaldo O. Santos Universidade Federal Oeste do Pará - UFOPA, Campus Tapajós, Rua Vera Paz, S/N, Salé - Santarém/PA, Brasil
  • Paulo Cerqueira Dos Santos Faculdade de Estatística, Instituto de Ciências Naturais e Exatas, Universidade Federal do Pará-UFPA, Campus Universitário do Guamá, Rua Augusto Correa, 01, Belém/PA 66075-110, Brasil
  • Rodolfo M. Almeida Universidade Federal Oeste do Pará - UFOPA, Campus Tapajós, Rua Vera Paz, S/N, Salé - Santarém/PA, Brasil
  • Rodrigo C. Mendes Programa de Pós-Graduação em Matemática, Pontifícia Universidade Católica - PUC, Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro/RJ, Brasil
  • Anderson Conceição Mendes Faculdade de Geologia, Instituto de Geociências, Universidade Federal do Pará-UFPA, Campus Universitário do Guamá, Rua Augusto Correa, 01, Belém/PA 66075-110, Brasil.

DOI:

https://doi.org/10.1344/GeologicaActa2022.20.5

Keywords:

Sediment provenance, Heavy minerals, Geostatistical modeling, Green Lake

Abstract

Geostatistical and multivariate statistical analyses were applied to heavy mineral data from an Amazonian fluvial-lake system near the Tapajós River mouth to investigate the spatial distribution and source-area of sediments. Twenty-one points were investigated, and the physical characteristics of the Green Lake deepest point were determined. Sand accumulates in the lake margins and mud quantity increases towards the lake center. Heavy mineral assemblage is composed of zircon, tourmaline, kyanite, rutile, staurolite, anatase, sillimanite, garnet, and spinel. Tourmaline, staurolite, and spinel are more abundant in the southeast area of the lake, while kyanite is dominant in the north area and zircon is in the whole lake except in its southeast area. Zircon - tourmaline and zircon - staurolite pairs are negatively correlated (r= -0.947 and -0.775, respectively), while tourmaline - staurolite and sillimanite - anatase pairs have a positive correlation (r= 0.628 and 0.675, respectively) which indicate different source rock types. Geostatistical analysis grouped the heavy minerals in three grups: Group 1 (tourmaline -staurolite – spinel - kyanite) and Group 2 (garnet – rutile – sillimanite - anatase) related to metamorphic source rocks ranging from medium to high grade, and Group 3 (zircon) related to acid igneous source rocks. The heavy mineral assemblage of Green Lake is analogous to the assemblage of the Alter do Chão Formation, indicating that this formation is the source of sediments of Green Lake.

References

Agência Nacional de Águas (ANA) Brasil, 2018. Hidroweb: Sistema de Informações Hidrológicas. Available online at: http://www.snirh.gov.br/hidroweb/ Accessed: October 1, 2018.

Aguiar Neto, A.B., Marques, W.S., Freire, G.S.S., 2016. Distribuição espacial de minerais pesados nos sedimentos superficiais da Plataforma Continental Oeste do Ceará, Nordeste do Brasil. Pesquisas em Geociências, 43, 69-83. DOI: https://doi.org/10.22456/1807-9806.78193

Bertassoli Jr., D.J., Sawakuchi, A.O., Sawakuchi, H.O., Pupim, F.N., Hartmann, G.A., McGlue, M.M, Chiessi, C.M., Zabel, M.,

Schefuß, E., Pereira, T.S., Santos, R.A., Faustino, S.B., Oliveira, P.E., Bicudo, D.C., 2017. The Fate of Carbon in Sediments of

the Xingu and Tapajós Clearwater Rivers, Eastern Amazon. Frontiers in Marine Science, 22, 1-14. DOI: https://doi.org/10.3389/fmars.2017.00044

Brito, R.N.R., Asp, N.E., Beasley, C.R., Santos, H.S.S., 2009. Características sedimentares fluviais associadas ao grau de preservação da Mata Ciliar - Rio Urumajó, Nordeste Paraense. Acta Amazônica, 39, 173-180. DOI: https://doi.org/10.1590/

S0044-59672009000100017

Carvalho, N.O., 2008. Hidrossedimentologia Prática. Rio de Janeiro, Companhia de Pesquisa em Recursos Minerais (CPRM), 600pp.

Cascalho, J., 2019. Provenance of Heavy Minerals: A Case Study from the WNW Portuguese Continental Margin. Minerals, 9,

-388. DOI: https://doi.org/10.3390/min9060355

Dadalto, T.P., Albino, J., 2009. Morphotextural analysis and application of sediment transportation models in submerged

area adjacent to an artificial beach in erosive process. Quaternary and Environmental Geosciences, 1, 16-24. DOI: http://dx.doi.org/10.5380/abequa.v1i1.14189

Deer, W.A., Howie, R.A., Zussman, J., 1997. Rock-forming Minerals vol. 1A, Orthosilicates. London (UK), The Geological Society, 936pp.

Derkachev, A.N, Nikolaeva, N.A., 2007. Multivariate analysis of heavy mineral assemblages of sediments from the marginal seas of the Western Pacific. In: Mange, M.A., Wright, D.T. (eds.). Heavy Minerals in Use. Developments in Sedimentology, 58, 439-464.

Ebqa’ai, M., Ibrahim, B., 2017. Application of multivariate statistical analysis in the pollution and health risk of trafficrelated heavy metals. Environment Geochemistry Health, 39, 1441-1456. DOI: https://doi.org/10.1007/s10653-017-9930-9

Freitas, P.T.A., Asp, N.E., Souza-Filho, P.W.M., Nittrouer, C.A., Ogston, A.S., Silva, M. S., 2017. Tidal influence on the hydrodynamics and sediment entrapment in a major Amazon River tributary – Lower Tapajós River. Journal of South American Earth Sciences, 79, 189-201. DOI: 10.1016/j.jsames.2017.08.005

Frihy, O.E., Deabes, E.A., Abudia, A.A., Adawi, A., 2022. Heavy mineral composition and texture of the recently formed fluvial

delta sediment of Lake Nasser/Nubia, Egypt and Sudan. International Journal of Sediment Research, 37, 70-82. DOI: https://doi.org/10.1016/j.ijsrc.2021.07.002

Galehouse, J.S., 1971. Sedimentation analysis. In: Carver, R.R. (ed.). Procedures in Sedimentary Petrology, New York, WileyInterscience, 69-94.

Góes, A.M., Rossetti, D.F., Mendes, A.C., 2007. Heavy mineral as a tool to refine the stratigraphy of kaolin deposits in the Rio

Capim Area, Northern Brazil. Anais da Academia Brasileira de Ciências, 79, 457-471. DOI: https://doi.org/10.1590/S0001-37652007000300009

Gozzi, P.V.T., 2019. Mineralogia e geoquímica dos sedimentos de fundo do rio-lago Tapajós-PA. Master’s Thesis. Belém, Federal University of Pará, 1-106.

Guyot, J.L., Jouanneau, J.M., Soares, L., Boaventura, G.R., Maillet, N., Lagane, C., 2007. Clay mineral composition of river sediments in the Amazon Basin. Catena, 71, 340-356. DOI: https://doi.org/10.1016/j.catena.2007.02.002

Hair Jr., J.F., Black, W.C., Babin, B.J., Anderson, R.E., 2014. Multivariate Data Analysis. British Library Cataloguing-inPublication Data, 739pp.

Hubert, J.E., 1962. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral

assemblages with the cross composition and texture of sandstones. Journal of Sedimentary Petrolology, 32, 440-450.

DOI: http://dx.doi.org/10.1306/74D70CE5-2B21-11D7-8648000102C1865D

Knox, R.W.O’B., Franks, S.G., Cocker, J.D., 2007. Stratigraphic evolution of heavy-mineral provenance signatures in the sandstones of the Wajid Group (Cambrian to Permian), southwestern Saudi Arabia. GeoArabia, 12, 65-96.

Landim, P.M.B., Bósio, N.J., Wu, F.T., Castro, P.R.M., 1983. Minerais pesados provenientes do leio do rio Amazonas. Acta

Amazônica, 13, 51-72. DOI: https://doi.org/10.1590/1809-43921983131051

Leandro, G.R.S., Souza, C.A., Nascimento, F.R., 2014. Bottom sediments and in suspension in fluvial corridor of the Paraguay River, north Pantanal of Mato Grosso, Brazil. Boletim Goiano de Geografia, 34, 195-214.

Lima Jr., W.J.S., Nogueira, A.C.R., 2013. Sedimentologia e proveniência de depósitos recentes do rio Amazonas, entre Santarém (PA) e Macapá (AP). Belém (PA), 13° Simpósio de Geologia da Amazônia (Cd-Rom).

Lu, X., Wang, L., Li, L.Y., Lei, K., Huang, L., Kang, D., 2010. Multivariate statistical analysis of heavy metals in street dust

of Baoji, NW China. Journal of Hazardous Materials, 173, 744-749. DOI: https://doi.org/10.1016/j.jhazmat.2009.09.001

Maia, A.R., Peleja, J.R.P., Goch, Y.G.F., Bacelar, R., Souza, D.A., Lemos, E.J.S., 2016. Mercúrio total em sedimentos fluviais da Bacia do rio Tapajós em regiões com e sem atividade garimpeira. Amazônia, Brasil. In: Ecotox. Curitiba (PR), Brazil, XVI Congresso Brasileiro de Ecotoxicologia, 607-609.

Matiatos, I., 2016. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Science of the Total Environment, 541, 802-814. DOI: https://doi.org/10.1016/j.scitotenv.2015.09.134

Meade, R.H., Rayol, J.M., Conceição, S.C., Natividade, J.R.G., 1991. Backwater effects in the Amazon River Basin of Brazil.

Environmental Geology and Water Sciences, 18, 105-114. DOI: https://doi.org/10.1007/BF01704664

Medeiros Filho, L.C., 2015. Influência do Rio Amazonas nos sedimentos de fundo do baixo Rio Tapajós: evidências geoquímicas e isotópicas (Pb-Sr-Nd). Master’s Thesis. Belém, Federal University of Pará, 1-93.

Medeiros Filho, L.C., Lafon, J.M., Souza-Filho, P.W.M., 2016. PbSr-Nd isotopic tracing of the influence of the Amazon River on the bottom sediments in the lower Tapajós River. Journal of South American Earth Scienc-es, 70, 36-48. DOI: https://doi.org/10.1016/j.jsames.2016.04.012

Mendes, A.C., Santos Júnior, A.E.A., Nogueira, A.C.R., 2013. Petrografia de arenitos e minerais pesados da Formação Alter do Chão, bacia do Amazonas. Belém (PA), 13° Simpósio de Geologia da Amazônia (Cd-Rom).

Mendes, A.C., Salomão, G.N., Nogueira, A.C.R., Dantas, E.L., 2015. Provenance of the Alter do Chão Formation in Amazonas

State (Itacoatiara-Parintins cities), Amazonas Basin, Brazil. Brasília, XV Congresso Brasileiro de Geoquímica and International Symposium on Climate and Geodynamics of Amazon Basin (Cd-Rom).

Mendes, A.C., Dantas, A.B., Ribeiro, A.C.S., Santos, L.O., Mendes, K.C., Moraes, D S. Almeida, R.M., 2020. Provenance of heavy and clay minerals in bottom sediments of Green Lake, an Amazonian fluvial lake in Brazil. Acta Amazonica, 50, 159-

DOI: https://doi.org/10.1590/1809-4392201804681

Moquet, J.S., Guyot, J.L., Crave, A., Viers, J., Filizola, N., Martinez, J.M., Oliveira, T.C. S., Sánchez, L.S.H., Lagane, C., Lavado, W.,

Noriega, L., Pombosa, R., 2016. Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean. Environmental Science and Pollution Research, 23, 11405-11429. DOI: https://doi.org/10.1007/s11356-015-5503-6

Moral Cardona, J.P., Gutiérrez Mas, J.M., Sánchez Bellón, A., Domínguez-Bella, S., Martínez López, J., 2005. Surface textures of heavy-mineral grains: a new contribution to provenance studies. Sedimentary Geology, 174, 223-235. DOI: https://doi.org/10.1016/j.sedgeo.2004.12.006

Morton. A.C., 1984. Stability of detrital heavy minerals in Tertiary sandstones from the North Sea Basin. Clay Minerals, 19, 287-308. DOI: https://doi.org/10.1180/claymin.1984.019.3.04

Morton, A.C., Hallsworth, C., 1994. Identifying proveniencespecific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology, 90, 241-256. DOI: https://doi.org/10.1016/0037-0738(94)90041-8

Morton, A.C, Hallsworth, C., 1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124, 3-29. DOI: https://doi.org/10.1016/S0037-0738(98)00118-3

Nascimento, D.A., Garcia, M.G.L., Mauro, C.A., 1976. Projeto Radam Brasil. Folha SA.21–Santarém: geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Rio de Janeiro, Departamento Nacional da Produção Mineral, 10, 132-181.

Nascimento Jr., D.R., Sawakuchi, A.O., Guedes, C.C.F., Giannini, P.C.F., Grohmann, C.H., Ferreira, M.P., 2015. Provenance of sands from the confluence of the Amazon and Madeira rivers based on detrital heavy minerals and luminescence of quartz

and feldspar. Sedimentary Geology, 316, 1-12. DOI: https://doi.org/10.1016/j.sedgeo.2014.11.002

Nascimento Jr., D.R., Tossi, L.N.C., Oliveira, V.F., Lucena, B.B., 2017. Morphodynamics, transport and provenance of the recent beach-foredune system between Itarema and Camocim, West Coast of Ceará State (Brazil). Quaternary and Environmental Geosciences, 8, 24-45.

Ochoa, F.L., Góes, A.M., Rossetti, D.F., Sawakuchi, A.O., Cassini, L.V., Coutinho, J.M.V., 2013. Discrimination of Cenozoic deposits from the onshore portion of the Paraíba Basin (NE, Brazil) using heavy minerals and grain size. Brazilian Journal of Geology, 43, 555-570. DOI: https://doi.org/10.5327/Z2317-48892013000300010

Pan, B., Pang, H., Gao, H., Garzanti, E., Zou, Y., Liu, X., Li, F., Jia, Y., 2016. Heavy-mineral analysis and provenance of Yellow River sediments around the China Loess Plateau. Journal of Asian Earth Sciences, 127, 1-11. DOI: https://doi.org/10.1016/j.jseaes.2016.06.006

Ribeiro, A.C.S., Mendes, A.C., Dantas, A.B., Santos, L.O., 2017. Heavy minerals distribution of Green Lake, Alter do Chão Village, Pará State. Foz do Iguaçu (PR), II Congresso Internacional de Hidrossedimentologia, 19-22.

Ryan, P.D., Mange, M.A., Dewey, J.F., 2007. Statistical analysis of high-resolution heavy mineral stratigraphic data from the

Ordovician of western Ireland and its tectonic consequences. In: Mange, M.A., Wright, D.T. (eds.). Heavy Minerals in Use.

Developments in Sedimentology, 58, 465-490.

Sawakuchi, A.O., Jain, M., Mineli, T.D., Nogueira, L., Bertassoli Jr., D.J., Häggi, C., Sawakuchi, H.O., Pupim, F.N., Grohmann, C.H., Chiessi, C.M., Zabel, M., Mulitza, S., Mazoca, C.E.M., Cunha, D.F., 2018. Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River basin. Earth and Planetary

Science Letters, 492, 152-162. DOI: https://doi.org/10.1016/j.epsl.2018.04.006

Sousa, D.R., Cabral, A.S., Nobre, D., Lobato, H., Goch, Y.G.F., Peleja, J.R.P., Cabral, W.S., 2009. Diagnóstico sedimentar e físico-químico dos igarapés no trecho de Santarém a vila balneária de Alter do Chão-PA. Revista em Foco, 11, 75-85.

Sousa, S.S.C.G., Castro, J.W.A., Guedes, E., 2017. Grain size and heavy minerals of northern Rio de Janeiro state beaches (SE

Brazil): sediment distribution and deposition conditions. Geociências, 36, 365-380.

Souza, T.P., 2018. Influência do Rio Amazonas nos sedimentos de fundo do Rio Xingu: evidências mineralógicas e geoquímicas. Master’s Thesis. Belém, Federal University of Pará, 1-115.

Souza-Filho, P.W., Guimarães, J.T.F., Silva, M., Costa, F.R., Sahoo, P.K., Maurity, C., Dall’Agnol, R., 2016. Basin morphology, sedimentology and seismic stratigraphy of an upland lake from Serra dos Carajás, southeastern Amazon, Brazil. Boletim Museu Paraense Emílio Goeldi, Ciências Naturais, 11, 71-83.

Svendsen, J.B., Hartley, N.R., 2002. Synthetic heavy mineral stratigraphy: applications and limitations. Marine and Petroleum Geology, 19, 389-405. DOI: https://doi.org/10.1016/S0264-8172(02)00010-7

Tassinari, C.C.G., Bittencourt, J.S., Geraldes, M.C., Macambira, M.J.B., Lafon, J.M., 2000. The Amazon Craton. In: Cordani, U.G., Thomaz-Filho, A., Campos, D.A. (eds.). Tectonic Evolution of South America. Academia Brasileira de Ciências, Special Publication, 41-95.

Tavares, A.C.A., Bulhões, E., Estrada, A.F.D., 2010. Distribuição de fácies sedimentares e tendências de transporte de sedimentos na enseada de Manguinhos, Armação dos Búzios, RJ. Revista de Geografia, 2, 81-97.

Tokalıoğlu, S., Kartal, S., 2006. Statistical evaluation of the bioavailability of heavy metals from contaminated soils to vegetables. Bulletin of Environmental Contamination and Toxicology, 76, 311-319. DOI: https://doi.org/10.1007/s00128-006-0923-0

Veronez Jr., P., Bastos, A.C., Quaresma, V.S., 2009. Morfologia e distribuição sedimentar em um sistema estuarino tropical:

Baia de Vitoria, ES. Revista Brasileira de Geofísica, 27, 609-624. DOI: https://doi.org/10.1590/S0102-261X2009000400006

Vieira, S.R., 2000. Geoestatística em estudos de variabilidade espacial do solo. In: Novais, R.F., Alvarez, V.H., Schaefer, G.R. (eds.). Tópicos em ciência do solo. Viçosa, Sociedade Brasileira de Ciência do Solo, 1-54.

Viers, J., Roddaz, M., Filizola, N., Guyot, J.L., Sondag, F., Brunet, P., Zouiten, C., Boucayrand, C., Martin, F., Boaventura, G.R.,

Seasonal and provenance controls on Nd–Sr isotopic compositions of Amazon rivers supended sediments and implications for Nd and Sr fluxes exported to the Atlantic Ocean. Earth and Planetary Science Letters, 274, 511-523. DOI: https://doi.org/10.1016/j.epsl.2008.08.011

Winter, J.D., 2014. A Classification of Metamorphic Rocks. In: Winter, J.D. (ed.). Principles of Igneous and Metamorphic Petrology. Harlow (England), Pearson Education Limited, 491-498.

Wittmann, H., von Blanckenburg, F., Maurice, L., Guyot, J.L., Filizola Jr., N., Kubik, P.W., 2011. Sediment production and delivery in the Amazon River basin quantified by in situ-produced cosmogenic nuclides and recent river loads. Geological Society of America Bulletin, 123, 934-950. DOI: https://doi.org/10.1130/B30317.1

Yang, S., Wang, Z., Guo, Y., Li, C., Cai, J., 2009. Heavy mineral compositions of the Changjiang (Yangtze River) sediments

and their provenance-tracing implication. Journal of Asian Earth Sciences, 35, 56-65. DOI: https://doi.org/10.1016/j.jseaes.2008.12.002

Yıldırım, G., Tokalıoğlu, S., 2016. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis. Ecotoxicology and Environmental Safety, 124, 369-376. DOI: https://doi.org/10.1016/j.ecoenv.2015.11.006

Yongming, H., Peixuan, D., Junji, C., Posmentier, E.S., 2006. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 355, 176-186. DOI: https://doi.org/10.1016/j.scitotenv.2005.02.026

Downloads

Published

2022-06-21

Issue

Section

Articles