Geochemistry of metabasites from the western Singhbhum Craton, eastern India: implications for subduction-zone tectonics and mantle-wedge metasomatism


  • Rajanikanta Rajani Wadia Institute of Himalayan Geology



Singhbhum Craton, Porphyritic texture, Slab Melting, Mantle Wedge Metasomatism, Nb-Enriched Basalts


The identification of new rock types in the volcano-sedimentary sequences of the Singhbhum Craton has attracted much attention in recent years. The present study deals on newly identified Nb-Enriched Basalts (NEB) from the Khandadharpahar-Kadakala-Thakuranipahar (KKT) section, western Singhbhum Craton, which is comparable in composition to basalts-basaltic andesites and calk-alkaline in character. These metabasites have a porphyritic texture with phenocrysts of pyroxene and plagioclase, as well as a groundmass that has metamorphosed to the greenschist facies. High Nb contents (7.5-22.8ppm) combined with high (Nb/Th)PM (0.28-0.59), (Nb/La)PM (0.40-0.69) and Nb/U (11.7-34.4) ratios, compared to arc basalts ((Nb/Th)PM= 0.10-1.19; (Nb/La)PM 0.17-0.99, Nb/U<10), characterized them as NEB. Negative Nb, Zr, Hf and Ti anomalies, and Nb/Th vs La/Nb and Th/Nb vs. La/Sm relationships, collectively indicate typical arc volcanics. The available geochemical parameters suggest a genesis of KKT metabasites through i) slab melt migration from the downgoing oceanic crust, ii) low-degree melting of the garnet-bearing peridotite in the mantle wedge metasomatized by the slab melts, iii) slab melt - peridotite interaction triggering increasing Nb concentrations and iv) NEB generation in an arc-related environment. The discovery of KKT NEB sheds new information on Paleoproterozoic subduction-zone processes and crustal growth in the Singhbhum craton.


Adhikari, A., Nandi, A., Mukherjee, S., Vadlamani, R., 2021. Petrogenesis of Neoarchean (2.80-2.75 Ga) Jagannathpur volcanics and the Ghatgaon and Keshargaria dyke swarms, Singhbhum craton, eastern India: Geochemical, Sr-Nd isotopic and Sm-Nd geochronologic constraints for interaction of enriched-DMM derived magma with metasomatised subcontinental lithospheric mantle. Lithos, 400-401, 106373.

Aguillon-Robles, A., Calmus, T., Benoit, M., Bellon, H., Maury, R.C., Cotten, J., Bourgois, J., Michaud, F., 2001. Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: indicators of East Pacific Rise subduction below southern Baja California? Geology, 29(6), 531-534.

Avdeiko, G.P., Bergale Kuvikas, O.V., 2015. The geodynamic conditions for the generation of adakites and Nberich basalts (NEAB) in Kamchatka. Journal of Volcanology and Seismology, 9, 295-306.

Azizi, H., Asharana, Y., Tsuboi, M., 2014. Quaternary high-Nb basalts: existence of young oceanic crust under the SanandajSirjan Zone, NW Iran. International Geology Review, 56(2), 167-186.

Banerjee, M., Ray, J., Nandy, S., Manikyamba, C., Madhuparna, P., Chakraborthy, D., Eslami, A., 2016. Experimental studies to constrain parental magma of Malangtoli volcanics from Singhbhum craton of eastern Indian shield. Journal of Geological Society of India, 88, 245-255.

Barry, T.L., Saunders, A.D., Kempton, P.D., Windley, B.F., Pringle, M.S., Dorjnamjaa, D., Saandar, S., 2003. Petrogenesis of Cenozoic basalts from Mongolia: evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources. Journal of Petrology, 44, 55-91.

Benoit, M., Aguillón-Robles, A., Calmus, T., Maury, R., Bellon, H., Cotton, J., Bourgois, J., Michard, F., 2002. Geochemical diversity of Late Miocene volcanism in southern Baja California, Mexico: implication of mantle and crustal sources during the opening of an asthenospheric window. The Journal of Geology, 110, 627-648.

Bose, M.K., 2000. Mafic - ultramafic magmatism in the eastern Indian craton - A review. Geological Survey of India, 55 (Special Publication), 227-258.

Bose, M.K., 2009. Precambrian mafic magmatism in the Singhbhum Craton, eastern India. Journal of Geological Society of India, 73, 13-35.

Castillo, P.R., 2008. Origin of the adakite-high-Nb basalt association and its implications for post subduction magmatism in Baja California, Mexico. Geological Society of America Bulletin, 120, 451-462.

Castillo, P.R., 2012. Adakite petrogenesis. Lithos, 134-135, 304-316.

Chaudhuri, T., Wan, Y., Mazumder, R., Ma, M., Liu, D., 2018. Evidence of enriched, Hadean mantle reservoir from 4.2-4.0 Ga zircon xenocrysts from Paleoarchean TTGs of the Singhbhum Craton, Eastern India. Scientific Reports, 8(7069), 1-12.

Chen, S.S., Shi, R.D., Yi, G.D., Zou, H.B., 2016. Middle Triassic volcanic rocks in the Northern Qiangtang (Central Tibet): geochronology, petrogenesis, and tectonic implications. Tectonophysics, 666, 90-102.

Defant, M.J., Jackson, T.E., Drummond, M.S., 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: An overview. London, Journal of the Geological Society, 149, 569-579.

Elliott, T., Plank, T., Zindler, A., White, W., Bourdon, B., 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, Solid Earth, 102(B7), 14991-15019.

Furman, T., Graham, D., 1999. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos, 48, 237-262.

Green, T.H., 1994. Experimental studies of trace-element partitioning applicable to igneous petrogenesis—Sedona 16 years later. Chemical Geology, 117, 1-36.

Han, Q., Peng, S., 2020. Paleoproterozoic subduction within the Yangtze Craton: Constraints from Nb-enriched mafic dikes in the Kongling complex. Precambrian Research, 340, 105634.

Hastie, A.R., Mitchell, S.F., Kerr, A.C., Minifie, M.J., Millar, I.L., 2011. Geochemistry of rare high-Nb basalt lavas: are they derived from a mantle wedge metasomatised by slab melts? Geochimica et Cosmochimica Acta, 75(17), 5049-5072.

Hawkesworth, C.J., Gallagher, K., Hergt, J.M., McDermott, F., 1993. Mantle and slab contributions in arc magmas. Annual Review of Earth and Planetary Sciences, 21(1), 175-204.

Hoang, N., Uto, K., 2006. Geochemistry of Cenozoic basalts in the Fukuoka district (northern Kyushu, Japan): implications for asthenosphere and lithospheric mantle interaction. Chemical Geology, 198, 249-268.

Hollings, P., Kerrich, R., 2000. An Archean arc basalt-Nbenriched basalt-adakite association: the 2.7 Ga Confederation assemblage of the Birch-Uchi greenstone belt, Superior Province. Contribution to Mineralogy and Petrology, 139(2), 208-226.

Hollings, P., 2002. Archean Nb-enriched basalts in the northern Superior Province. Lithos, 64(1), 1-14.

Johnson, K.T.M., 1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contribution to Mineralogy and Petrology, 133, 60-68.

Karsli, O., Ilhan, M., Kandemir, R., Dokuz, A., Aydin, F., Uysal, I., Duygu, L., 2021. Nature of the Early Cretaceous lamprophyre

and high-Nb basaltic dykes, NE Turkey: Constraints on their linkage to subduction initiation of Neotethyan oceanic lithosphere. Lithos, 380, 105884.

Kelemen, P.B., Shimazu, N., Dunn, T., 1993. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/ rock reaction in the upper mantle. Earth and Planetary Science Letters, 120, 111-134.

Kepezhinskas, P.K., Defant, M.J., Drummond, M.S., 1996. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochimica et Cosmochimica Acta, 60, 1217-1229.

Kepezhinskas, P., McDermott, F., Defant, M.J., Hochstaedter, A., Drummond, M.S., 1997. Trace element and Sr-NdPb isotopic constraints on a three component model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta, 61(3), 577-600.

Kerrich, R., Manikyamba, C., 2012. Contemporaneous eruption of Nb-enriched basalts-Kadakites- Na-adakites from the 2.7 Ga Penakacherla terrane: implications for subduction zone processes and crustal growth in the eastern Dharwar craton, India. Canadian Journal of Earth Sciences, 49(4), 615-636.

Khanna, T.C., Sai, V.V.S., Bizimis, M., Krishna, A.K., 2015. Petrogenesis of basalt-high-Mg andesite-adakite in the Neoarchean Veligallu greenstone terrane: Geochemical evidence for a rifted back-arc crust in the eastern Dharwar craton, India. Precambrian Research, 258, 260-277.

Krishna, A.K., Murthy, N.N., Govil, P.K., 2007. Multielement Analysis of Soils by Wavelength-Dispersive X-ray Fluorescence Spectrometry. Atomic spectrometry, 28(6), 202-214.

Le Bas, M.J., Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali and silica diagram. Journal of Petrology, 27, 45-750.

Lesher, C.M., Burnham, O.M., Keays, R.R., Barnes, S.J., Hulbert, L., 2001. Trace-element geochemistry and petrogenesis of barren and ore associated komatiites. Canadian Mineralogist, 39, 673-696.

Liao, F-X., Chen, N-S., Santosh, M., Wang, Q-Y., Gong, S-L., He, C., Mustafa, H.A., 2018. Paleoproterozoic Nbeenriched meta-gabbros in the Quanji Massif, NW China: Implications for assembly of the Columbia supercontinent. Geosciences Frontiers, 9, 577-590.

Litvak, V.D., Poma, S., 2010. Geochemistry of mafic Paleocene volcanic rocks in the Valle del Cura region: Implications for the petrogenesis of primary mantle-derived melts over the Pampean flat-slab. Journal of South American Earth Sciences, 29(3), 705-716.

Liu, C.H., Zhao, G.C., Liu, F.L., Shi, J.R., 2014. 2.2 Ga magnesian andesites, Nb-enriched basalt-andesites, and adakitic rocks

in the Luliang Complex: evidence for early Paleoproterozoic subduction in the North China Craton. Lithos, 208, 104-117.

Liu, H., Wang, Y., Cawood, P.A., Guo, X., 2017. Episodic slab rollback and back-arc extension in the Yunnan-Burma region: Insights from cretaceous Nb-enriched and oceanic-island basalt-like mafic rocks. Geological Society of America Bulletin, 129(5-6), 698-714.

Liu, H., Li, Y., Wu, L., Huangfu, P., Zhang, M., 2018. Geochemistry of high-Nb basaltandesite in the Erguna Massif (NE China)

and implications for the early Cretaceous back-arc extension. Geological Journal, 54(1), 291-307.

Manikyamba, C., Naqvi, S.M., Rao, D.V.S., Mohan, M.R., Khanna, T.C., Rao, T.G., Reddy, G.L.N., 2005. Boninites from the Neoarchean Gadwal greenstone belt, eastern Dharwar Craton, India: implications for Archean subduction processes. Earth and Planetary Science Letters, 230, 65-83.

Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., Champion, D., 2005. An overview of adakite, tonalite-trondhjemitegranodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2), 1-24.

Mazhari, S.A., 2016. Petrogenesis of adakite and high-Nb basalt association in the SW of Sabzevar Zone, NE of Iran: evidence for slab melt-mantle interaction. Journal of African Earth Sciences, 116, 170-181.

McCulloch, M.T., Gamble, A.J., 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102, 358-374.

Mckenzie, D., O’Nions, R.K., 1991. Partial melt distributions from inversion of rare Earth element concentrations. Journal of Petrology, 32, 1021-1091.

Misra, S., 2006. Precambrian chronostratigraphic growth of Singhbhum-Orissa Craton, Eastern Indian Shield: an alternative model. Journal of the Geological Society of India, 67, 356-378.

Pandey, O.M., Mezger, K., Ranjan, S., Upadhyay, D., Villa, I.M., Nagler, F.M., Vollsteadt, H., 2019. Genesis of the Singhbhum Craton, eastern India; implications for Archean crust-mantle evolution of the Earth. Chemical Geology, 512, 85-106.

Paul, M., Ray, J., Manikyamba, C., Ganguly, C., Singh, M.R., Pachal, S., Sarkar, D., 2020. Mafic volcanic rocks of western Iron Ore Group, Singhbhum Craton, eastern India: Geochemical evidence for ocean-continent convergence. Geological Journal, 56(1), 102-129.

Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R.S. (ed.). Andesites.

Wiley, Chichester, 525-548.

Pearce, J.A., Parkinson, I.J., 1993. Trace element models for mantle melting: application to volcanic arc petrogenesis. Geological Society of London Special Publication, 76, 373-403.

Pearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Science, 23, 251-285.

Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14-48.

Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58, 130-143.

Percival, J.A., Stern, R.A., Rayner, N., 2003. Archean adakites from the Ashuanipi complex, eastern Superior Province, Canada: Geochemistry, geochronology, and tectonic significance. Contributions to Mineralogy and Petrology, 145, 265-280.

Perfit, M.R., Gust, D.A., Bence, A.E., Arculus, R.J., Taylor, S.R., 1980. Chemical characteristics of island-arc basalts: implications for mantle sources. Chemical Geology, 30(3), 227-256.

Petrone, C.M., Francalanci, L., Ferrari, L., Schaaf, P., Conticelli, S., 2006. The San Pedro-Cerro Grande Volcanic Complex (Nayarit, Mexico): inferences on volcanology and magma evolution. In: Siebe, C., Aguirre-Dı‘az, G., Macı‘as, J.L. (eds.). Neogene-Quaternary Continental Margin Volcanism: A Perspective from Mexico, 402. Geological Society of America, 65-68.

Petrone, C.M., Ferrari, L., 2008. Quaternary adakite-Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: is there any slab melt evidence? Contributions to Mineralogy and Petrology, 156(1), 73-86.

Polat, A., Kerrich, R., 2001. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes.

Contributions to Mineralogy and Petrology, 141(1), 36-52.

Polat, A., Hofmann, A.W., Rosing, M.T., 2002. Boninite-like volcanic rocks in the 3.7-3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology, 184(3),


Rapp, R.P., Shimizu, N., Norman, M.D., Applegate, G.S., 1999. Reaction between slab derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 160, 335-356.

Ray, J., Das, S., Bhattacharyya, P., 2006. Malangtoli lava of the eastern Indian shield: some aspects of major-element geochemistry and tectonic affiliation. Indian Minerals, 60, 55-68

Rudnick, R., Gao, S., 2003. Composition of the continental crust. Treatise on Geochemistry, 3, 1-64.

Saha, A.K., 1994. Crustal Evolution of Singhbhum-North Orissa, Eastern India, Memoir 27. Geological Society of India, 341pp.

Said, N., Kerrich, R., 2009. Geochemistry of coexisting depleted and enriched Paringa Basalts, in the 2.7 Ga Kalgoorlie Terrane, Yilgarn Craton, Western Australia: Evidence for a heterogeneous mantle plume event. Precambrian Research, 174, 287-309.

Sajona, F.G., Maury, R.C., Bellon, H., Cotten, J., Defant, M.J., Pubellier, M., 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21(11), 1007-1010.

Sajona, F.G., Maury, R.C., Bellon, H., Cotten, J., Defant, M., 1996. High field strength element enrichment of pliocenepleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37(3), 693-726.

Sharma, R.S., 2009. Cratons and Fold Belts of India. Heidelberg, Springer Verlag, 324pp.

Shen, X.M., Zhang, H.X., Wang, Q., Ma, L., Yang, Y.H., 2014. Early Silurian (w440 Ma) adakitic, andesitic and Nbeenriched basaltic lavas in the southern Altay Range, Northern Xinjiang (western China): slab melting and implications for crustal growth in the Central Asian Orogenic Belt. Lithos, 206-207, 234-251.

Singh, M.R., Manikyamba, C., Ganguly, S., Ray, J., Santosh, M., Singh, T.D., Kumar, B.C., 2017. Paleoproterozoic arc basaltboninite-high magnesian andesite-Nb enriched basalt association from the Malangtoli volcanic suite, Singhbhum Craton, eastern India: geochemical record for subduction initiation to arc maturation continuum. Journal of Asian Earth Sciences, 134, 191-206.

Smithies, R.H., Champion, D.C., van Kranendonk, M.K., Howard, H.M., Hickman, A.H., 2005. Modern-style subduction processes in the Mesoarchean: geochemical evidence from the 3.12 Ga Whundo intra-oceanic arc. Earth and Planetary Science Letters, 231, 221-237.

Song, X.Y., Zhou, M.F., Keays, R.R., Cao, Z.M., Sun, M., Qi, L., 2006. Geochemistry of the Emeishan flood basalts at Yangliuping, Sichuan, SW China: Implications for sulphide segregation. Contributions to Mineralogy and Petrology, 152, 53-74.

Sorbadere, F., Schiano, P., Métrich, N., Bertagnini, A., 2013. Smalle scale coexistence of islande-arc and enriched-MORBtype basalts in the central Vanuatu arc. Contributions to Mineralogy and Petrology, 166, 1305-1321.

Spandler, C., Pirard, C., 2013. Element recycling from subducting slabs to arc crust: a review. Lithos, 170, 208-223.

Sreenivas, B., Dey, S., Rao, Y.B., Kumar, T.V., Babu, E.V.S.S.K., Williams, I.S., 2019. A new cache of Eoarchaean detrital zircons from the Singhbhum craton, eastern India and constraints on early Earth geodynamics. Geoscience Frontiers, 10, 1359-1370.

Sun, S.S., Mc Donough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J., (eds.). Magmatism in the Ocean Basins. London, The Geological Society, 42 (Special Publication), U.K., Blackwell Scientific Publication, 313-345.

Thirlwall, M.F., Smith, T.E., Graham, A.M., Theodorou, N., Hollings, P., Davidson, J.P., Arculus, R.J., 1994. High field strength element anomalies in arc lavas: source or process? Journal of Petrology, 35, 819-838.

Tiepolo, M., Vannucci, R., Oberti, R., Foley, S., Bottazzi, P., Zanetti, A., 2000. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal-chemical constraints and implications for natural systems. Earth and Planetary Science Letters, 176, 185-201.

Ujike, O., Goodwin, A.M., Shibata, T., 2007. Geochemistry of Archean volcanic rocks from the Upper Keewatin assemblage (ca. 2.7 Ga), Lake of the Woods greenstone belt, Western Wabigoon subprovince, Superior Province, Canada. Island Arc, 16, 191-208.

Wang, K.L., Chung, S.L., O’Reilly, S.Y., Sun, S.S., Shinjo, R., Chen, C.H., 2004. Geochemical constraints for the genesis of postcollisional magmatism and the geodynamic evolution of the northern Taiwan region. Journal of Petrology, 45, 975-1011.

Wang, Q., Wyman, D.A., Zhao, Z.H., Xu, J.F., Bai, Z.H., Xiong, X.L., Dai, T.M., Li, C.F., Chu, Z.Y., 2007. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chemical Geology, 236(1), 42-64.

Wang, Q., Wyman, D.A., Xu, J.F., Wan, Y., Li, C.F., Zi, F., Qiu, H.N., Chu, Z.Y., Zhao, Z.H., Dong, Y.H., 2008. Triassic Nb-enriched

basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155(4), 473-490.

Wang, Z.L., Deru, X.U., Chuanjun, W.U., Wangwei, F.U., Li, W., Jun, W., 2013. Discovery of the late Paleozoic ocean island basalts (OIB) in Hainan Island and their geodynamic implications. Acta Petrologica Sinica, 29(3), 875-886.

Weaver, B.L., 1990. Geochemistry of highly-undersaturated ocean island basalt suites from the South Atlantic Ocean: Fernando de Noronha and Trindade Islands. Contributions to Mineralogy and Petrology, 105, 502-515.

Wood, D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50, 11-30.

Wyman, D.A., Ayer, J.A., Devaney, J.R., 2000. Niobium-enriched basalts from the Wabigoon subprovince, Canada: Evidence for adakitic metasomatism above an Archean subduction zone. Earth and Planetary Science Letters, 179(1), 21-30.

Xia, L.Q., Xia, Z.C., Xu, X.Y., Li, X.M., Ma, Z.P., 2009. Do the Tianshan Carboniferous volcanic successions contain Nbeenriched arc basalts? Earth Science Frontiers, 16(6), 303-317.

Xu, J., Xia, X.-P., Lai, C.-K., Zhou, M., Ma, P., 2019. First Identification of Late Permian Nb‐Enriched Basalts in Ailaoshan Region (SW Yunnan, China): Contribution from Emeishan Plume to Subduction. Geophysical Research Letters, 46, 2511-2523.

Zhang, H., Niu, H., Sato, H., Yu, X., Shan, Q., Zhang, B., Ito, J., Nagao, T. 2005. Late Palaeozoic adakites and Nb-enriched basalts from northern Xinjiang northwest China: evidence for the southward subduction of the Paleo-Asian Oceanic plate. Island Arc, 14, 55-68.

Zhang, A.M., Wang, Y.J., Fan, W.M., Zhang, Y., Yang, J., 2012. Earliest Neoproterozoic (ca. 1.0 Ga) arcebackearc basin nature along the northern Yunkai Domain of the Cathaysia Block: geochronological and geochemical evidence from the metabasite. Precambrian Research, 220-221, 217-233.

Zhang, H.R., Yang, T., Hou, Z., Bian, Y., 2016. Devonian Nbeenriched basalts and andesites of northecentral Tibet: evidence for the early subduction of the PaleoeTethyan oceanic crust beneath the North Qiangtang Block. Tectonophysics, 682, 96-107.