Modelling of the LTDE-SD radionuclide diffusion experiment in crystalline rock at the Äspö Hard Rock Laboratory (Sweden)

Authors

  • Josep Soler Institut de Diagnosi Ambiental i Estudis de l'aigua (IDAEA-CSIC)
  • Shuo Meng
  • Luis Moreno
  • Ivars Neretnieks
  • Longcheng Liu
  • Pekka Kekäläinen
  • Milan Hokr
  • Jakub Říha
  • Aleš Vetešník
  • Dan Reimitz
  • Jakub Višňák
  • Dušan Vopálka
  • Klaus-Peter Kröhn
  • Yukio Tachi
  • Tsuyoshi Ito
  • Urban Svensson
  • Aitor Iraola
  • Paolo Trinchero
  • Mikko Voutilainen
  • Guido Deissmann
  • Dirk Bosbach
  • Dong Kyu Park
  • Sung-Hoon Ji
  • Libor Gvoždík
  • Martin Milický
  • Michal Polák
  • Björn Gylling
  • Bill Lanyon

DOI:

https://doi.org/10.1344/GeologicaActa2022.20.7

Keywords:

Matrix diffusion, Sorption, Radionuclides, Modelling, Crystalline rock

Abstract

This study shows a comparison and analysis of results from a modelling exercise concerning a field experiment involving the transport and retention of different radionuclide tracers in crystalline rock. This exercise was performed within the Swedish Nuclear Fuel and Waste Management Company (SKB) Task Force on Modelling of Groundwater Flow and Transport of Solutes (Task Force GWFTS).Task 9B of the Task Force GWFTS was the second subtask within Task 9 and focused on the modelling of experimental results from the Long Term Sorption Diffusion Experiment in situ tracer test. The test had been performed at a depth of about 410m in the Äspö Hard Rock Laboratory. Synthetic groundwater containing a cocktail of radionuclide tracers was circulated for 198 days on the natural surface of a fracture and in a narrow slim hole drilled in unaltered rock matrix. Overcoring of the rock after the end of the test allowed for the measurement of tracer distribution profiles in the rock from the fracture surface (A cores) and also from the slim hole (D cores). The measured tracer activities in the rock samples showed long profiles (several cm) for non- or weakly-sorbing tracers (Cl-36, Na-22), but also for many of the more strongly-sorbing radionuclides. The understanding of this unexpected feature was one of the main motivations for this modelling exercise. However, re-evaluation and revision of the data during the course of Task 9B provided evidence that the anomalous long tails at low activities for strongly sorbing tracers were artefacts due to cross-contamination during rock sample preparation. A few data points remained for Cs-137, Ba-133, Ni-63 and Cd-109, but most measurements at long distances from the tracer source (>10mm) were now below the reported detection limits.Ten different modelling teams provided results for this exercise, using different concepts and codes. The tracers that were finally considered were Na-22, Cl-36, Co-57, Ni-63, Ba-133, Cs-137, Cd-109, Ra-226 and Np-237. Three main types of models were used: i) analytical solutions to the transport-retention equations, ii) continuum-porous-medium numerical models, and iii) microstructure-based models accounting for small-scale heterogeneity (i.e. mineral grains, porosities and/or microfracture distributions) and potential centimetre-scale fractures. The modelling by the different teams led to some important conclusions, concerning for instance the presence of a disturbed zone (a few mm in thickness) next to the fracture surface and to the wall of the slim hole and the role of micro-fractures and cm-scale fractures in the transport of weakly sorbing tracers. These conclusions could be reached after the re-evaluation and revision of the experimental data (tracer profiles in the rock) and the analysis of the different sets of model results provided by the different teams.

References

Aalto, P., Aaltonen, I., Ahokas, H., Andersson, J., Hakala, M., Hellä, P., Hudson, J., Johansson, E., Kemppainen, K., Koskinen, L., Laaksoharju, M., Lahti, M., Lindgren, S., Mustonen, A., Pedersen, K., Pitkänen, P., Poteri, A., Snellman, M., Ylä-Mella, M., 2009. Programme for repository host rock characterisation in the ONKALO (ReRoC). Olkiluoto (Finland), Posiva Oy, Posiva Working Report 2009-31, 64pp.

Bibby, R., 1981. Mass transport of solutes in dual-porosity media. Water Resources Research 17, 1075-1081.

Birgersson, L., Neretnieks, I., 1990. Diffusion in the matrix of granitic rock: Field test in the Stripa mine. Water Resources

Research, 26, 2833-2842.

Březina, J., Stebel, J., Flanderka, D., Exner, P., Hybš, J., 2018. Flow123d, Version 2.2.1, User guide and input reference. Liberec (Czech Republic), Technical university of Liberec, Faculty of Mechatronics, Informatics and Interdisciplinary Studies. Last accessed: July 2022 Website: https://flow123d.github.io/

Carrera, J., Sánchez-Vila, X., Benet, I., Medina, A., Galarza, G., Guimerà, J., 1998. On matrix diffusion: formulations, solution

methods and qualitative effects. Hydrogeology Journal 6, 178-190.

Cramer, J.J., Melynk, T.W., Miller, H.G., 1997. In-situ diffusion in granite: Results from scoping experiments. Pinawa (Manitoba, Canada), Whiteshell Laboratories, Atomic Energy of Canada Limited (AECL), Report 11756. 58pp.

Cvetkovic, V., 2010. Diffusion-controlled tracer retention in crystalline rock on the field scale. Geophysical Research Letters, 37, L13401.

Foster, S.S.D., 1975. The chalk groundwater tritium anomaly – A possible explanation. Journal of Hydrology, 25, 159-165.

Glueckauf, E., 1980. The movement of solutes through aqueous fissures in porous rock. Oxfordshire (United Kingdom).

Harwell, Atomic Energy Research Establishment (AERE), Report R.9823, 35pp.

GoldSim Technology Group, 2018. User’s guide, GoldSim, Probabilistic Simulation Environment. Issaquah (WA, USA). GoldSim Technology Group, 1252pp.

Grisak, G.E., Pickens, J.F., 1980. Solute transport through fractured media. 1. The effect of matrix diffusion. Water Resources

Research, 16, 719-730.

Grisak, G.E., Pickens, J.F., 1981. An analytical solution for solute transport through fractured media with matrix diffusion.

Journal of Hydrology, 52, 47-57.

Guimerà, J., Carrera, J., 2000. A comparison of hydraulic and transport parameters measured in low-permeability fractured

media. Journal of Contaminant Hydrology, 41, 261-281.

Haggerty, R., McKenna, S.A., Meigs, L.C., 2000. On the late-time behavior of tracer test breakthrough curves. Water Resources Research, 36, 3467-3479.

Hammond, G., Lichtner, P., Mills, R., 2014. Evaluating the performance of parallel subsurface simulators: An illustrative

example with PFLOTRAN. Water Resources Research, 50, 208-228.

Hartikainen, J., Hartikainen, K., Hautojärvi, A., Kuoppamäki, K., Timonen, J., 1996. Helium gas methods for rock characteristics and matrix diffusion. Helsinki (Finland), Posiva Oy, Posiva Report 96-22, 81pp.

Hartley, L.J., 1998. NAPSAC release 4.1 technical summary document, AEA-R&R-0271. United Kingdom, Atomic Energy Authority Technology (AEA), 42pp.

Hodgkinson, D., Benabderrahmane, H., Elert, M., Hautojärvi, A., Selroos, J.O., Tanaka, Y., Uchida, M., 2009. An overview of Task 6 of the Äspö Task Force: modelling groundwater and solute transport: improved understanding of radionuclide transport in fractured rock. Hydrogeology Journal, 17, 1035-1049.

Hokr, M., Havlová, V., Vetešník, A., Gvoždík, L., Milický, M., Polák, M., Reimitz, D., Říha, J., Trpkošová, D., Višňák, J., Vopálka, D., 2020. Testing of transport models using foreign in-situ experiments. Prague (Czech Republic), Súrao: Radioactive Waste Repository Authority Správa úložišť radioaktivních odpadů, Report 481/2020/ENG, 195pp.

Hokr, M., Havlová, V., Vetešník, A., Gvoždík, L., Milický, M., Polák, M., Reimitz, D., Říha, J., Trpkošová, D., Višňák, J., Vopálka, D., 2021. Testing of fracture-matrix transport models using in-situ data and benchmark problems. Solna (Sweden), SKB: Svensk Kärnbränslehantering AB, Report P-20-22, 145pp

Iraola, A., Trinchero, P., Voutilainen, M., Gylling, B., Selroos, J-.O., Molinero, J., Svensson, U., Bosbach, D., Deissmann, G., 2017. Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock. Journal of Contaminant Hydrology, 207, 8-16.

Jakobs, 2021. ConnectFlow, Technical Summary, Version 12.3. Jacobs Clean Energy Limited, 126pp.

Jülich Supercomputing Centre, 2018. JURECA: Modular supercomputer at Jülich Supercomputing Centre. Journal of Large-Scale Research Facilities, 4, A132.

Kekäläinen, P., 2021. Modelling of the long term diffusion and sorption experiment using an analytically solvable model. Task 9 of SKB Task Force GWFTS – Increasing the realism in solute transport modelling based on the field experiments REPRO and LTDE-SD. Solna (Sweden), SKB: Svensk Kärnbränslehantering AB, Report P-21-06, 44pp.

Kröhn, K-.P., 2020. Checking on the consistency of the ‘twozone model’ for Task 9B – LTDE-SD. Task 9 of SKB Task Force GWFTS – Increasing the realism in solute transport modelling based on the field experiments REPRO and LTDESD. Solna (Sweden), SKB: Svensk Kärnbränslehantering AB, Report P-20-02, 43pp.

Kyllönen, J., Hakanen, M., Lindberg, A., Harjula, R., Vehkamäki, M., Lehto, J., 2014. Modeling of cesium sorption on biotite using cation exchange selectivity coefficients. Radiochimica Acta, 102, 919-929.

Li, Q., Ito, K., Lowry, C.S., Loheide II, S.P., 2009. COMSOL Multiphysics: A novel approach to ground water modeling. Groundwater, 47, 480-487.

Löfgren, M., Nilsson, K., 2020. Task description of Task 9B- Modelling of LTDE-SD performed at Äspö HRL. Task 9 of SKB Task Force GWFTS – Increasing the realism in solute transport modelling based on the field experiments REPRO and LTDE-SD. Solna (Sweden), SKB: Svensk Kärnbränslehantering AB, Report P-17-30, 201pp.

Maloszewski, P., Zuber, A., 1990. Mathematical modelling of tracer behaviour in short-term experiments in fissured rocks. Water Resources Research, 26, 1517-1528.

Meng, S., Moreno, L., Neretnieks, I., Liu, L., 2020. Modelling matrix diffusion in Task 9B – LTDE-SD. Task 9 of Svensk Kärnbränslehantering AB, Task Force GWFTS – Increasing the realism in solute transport modelling based on the field experiments REPRO and LTDE-SD. Solna (Sweden), SKB: Svensk Kärnbränslehantering AB P-20-01, 37pp.

Neretnieks, I., 1980. Diffusion in the rock matrix: An important factor in radionuclide retardation? Journal of Geophysical Research, 85, 4379-4397.

Neretnieks, I., 2002. A stochastic multi-channel model for solute transport – analysis of tracer tests in fractured rock. Journal of Contaminant Hydrology, 55, 175-211.

Nilsson, K., Byegård, J., Selnert, E., Widestrand, H., Höglund, S., Gustafsson, E., 2010. Äspö Hard Rock Laboratory. Long Term Sorption Diffusion Experiment (LTDE-SD). Results from rock sample analyses and modelling. Stockholm (Sweden),

Svensk Kärnbränslehantering AB, Report R-10-68, 298pp.

Ohlsson, Y., Löfgren, M., Neretnieks, I., 2001. Rock matrix diffusivity determinations by in-situ electrical conductivity measurements. Journal of Contaminant Hydrology, 47, 117-125.

Ota, K., Möri, A., Alexander, W.R., Frieg, B., Schild, M., 2003. Influence of the mode of matrix porosity determination on matrix diffusion calculations. Journal of Contaminant Hydrology, 61, 131-145.

Park, D.K., Ji, S-.H., 2018. Numerical simulation of anomalous observations from an in-situ long-term sorption diffusion experiment in a rock matrix. Journal of Hydrology, 565, 502-515.

Park, D.K., Ji, S-.H., 2020. Corrigendum to “Numerical simulation of anomalous observations from an in-situ long-term sorption diffusion experiment in a rock matrix” [J. Hydrol.565 (2018) 502–515]. Journal of Hydrology, 586, 124758.

Perko, J., Seetharam, S.C., Mallants, D., 2009. Simulation tools used in long-term radiological safety assessments. Project

Near Surface Disposal of Category A Waste at Dessel. Brussels (Belgium), NIROND-TR 2008-11 E. Organisme national des déchets radioactifs et des matières fissiles enrichies (ONDRAF)/ Nationale instelling voor radioactief afval en verrijkte splijtstoffen (NIRAS), 180pp.

Polak, A., Grader, A.S., Wallach, R., Nativ, R., 2003. Tracer diffusion from a horizontal fracture into the surrounding matrix: measurement by computed tomography. Journal of Contaminant Hydrology, 67, 95-112.

Schneider, A. (ed.), 2016. Modelling of data uncertainties on hybrid computers (H-DuR). Braunschweig (Germany), FKZ 02 E 11062A (BMWi), Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-392, 187pp.

Shapiro, A.M., 2001. Effective matrix diffusion in kilometerscale transport in fractured crystalline rock. Water Resources Research, 37, 507-522.

Skagius, K., Neretnieks, I., 1986. Porosities and diffusivities of some nonsorbing species in crystalline rocks. Water Resources Research, 22, 389-398.

Soler, J.M., Landa, J., Havlova, V., Tachi, Y., Ebina, T., Sardini, P., Siitari-Kauppi, M., Eikenberg, J., Martin, A.J., 2015. Comparative modeling of an in situ diffusion experiment in granite at the Grimsel Test Site. Journal of Contaminant Hydrology, 179, 89-101.

Soler, J.M., Meng, S., Moreno, L., Neretnieks, I., Liu, L., Kekäläinen, P., Hokr, M., Říha, J., Vetešník, A., Reimitz, D., Višňák, J., Vopálka, D., Kröhn, K.P., Tachi, Y., Ito, T., Svensson, U., Iraola, A., Trinchero, P., Voutilainen, M., Deissmann, G., Bosbach, D., Park, D.K., Ji, S.H., Gvoždík, L., Milický, M., Polák, M., Makedonska, N., Kuluris, S.P., Karra, S., Viswanathan, H.S., Gylling, B., Lanyon, G.W., 2021. Evaluation report of Task 9B based on comparisons and analyses of modelling results for the Äspö HRL LTDE-SD experiments. Task 9 of SKB Task Force GWFTS – Increasing the realism in solute transport modelling based on the field experiments REPRO and LTDESD. Solna (Sweden), SKB: Svensk Kärnbränslehantering AB, report TR-20-17, 71pp.

Soler, J.M., Neretnieks, I., Moreno, L., Liu, L., Meng, S., Svensson, U., Iraola, A., Ebrahimi, H., Trinchero, P., Molinero, J., Vidstrand, P., Deissmann, G., Říha, J., Hokr, M., Vetešník, A., Vopálka, D., Gvoždík, L., Polák, M., Trpkošová, D., Havlová, V., Park, D.K., Ji, S.H., Tachi, Y., Ito, T., Gylling, B., Lanyon, G.W., 2022. Predictive modeling of a simple field matrix diffusion experiment addressing radionuclide transport in fractured rock. Is it so straightforward? Nuclear Technology, 208, 1059-1073.

Svensson, U., 2020. Task 9B – A grain-scale reactive transport model – concepts and tests. Task 9 of SKB Task Force GWFTS – Increasing the realism in solute transport modelling based on the field experiments REPRO and LTDE-SD. Solna (Sweden), SKB: Svensk Kärnbränslehantering AB, Report P-20-15, 39pp.

Svensson, U., Ferry, M., 2014. DarcyTools: a computer code for hydrogeological analysis of nuclear waste repositories in fractured rock. Journal of Applied Mathematics and Physics, 2, 365-383.

Tachi, Y., Ebina, T., Takeda, C., Saito, T., Takahashi, H., Ohuchi, Y., Martin, A.J., 2015. Matrix diffusion and sorption of Cs+, Na+, I- and HTO in granodiorite: Laboratory-scale results and their extrapolation to the in situ condition. Journal of Contaminant Hydrology, 179, 10-24.

Tachi, Y., Ito, T., Gylling, B., 2017. Modeling the in-situ LongTerm Sorption and Diffusion Experiment (LTDE-SD) at the Äspö Hard Rock Laboratory in Sweden: scaling approach from laboratory to in-situ condition. Barcelona (Spain), 10-15 September 2017, Migration 2017, Book of Abstracts, Abstract PB5-1, 434.

Tachi, Y., Ito, T., Gylling, B., 2021. A scaling approach for retention properties of crystalline rock: Case study of the in-situ LongTerm Sorption and Diffusion Experiment (LTDE-SD) at the Äspö Hard Rock Laboratory in Sweden. Water Resources

Research, 57, e2020WR029335.

Vilks, P., Cramer, J.J., Jensen, M., Miller, N.H., Miller, H.G., Stanchell, F.W., 2003. In situ diffusion experiment in granite: Phase I. Journal of Contaminant Hydrology, 61, 191-202.

Vilks, P., Miller, N.H., Stanchell, F.W., 2005. Laboratory program supporting SKB’s Long Term Diffusion Experiment. Toronto (Ontario, Canada). Atomic Energy of Canada Limited, Report 06819-REP-01300-10111-R00, 40pp.

Voutilainen, M., Miettinen, A., Sardini, P., Parkkonen, J., Sammaljärvi, J., Gylling, B., Selroos, J-.O., Yli-Kaila, M., Koskinen, L., Siitari-Kauppi, M., 2019. Characterization of spatial porosity and mineral distribution of crystalline rock using X-ray micro computed tomography, C-14-PMMA autoradiography and scanning electron microscopy. Applied Geochemistry, 101, 50-61.

Waber, H.N., Gimmi, T., Smellie, J.A.T., 2011. Effects of drilling and stress release on transport properties and porewater chemistry of crystalline rocks. Journal of Hydrology, 405, 316-332.

Widestrand, H., Byegård, J., Selnert, E., Skålberg, M., Höglund, S., Gustafsson, E., 2010a. Äspö Hard Rock Laboratory. Long Term Sorption Diffusion Experiment (LTDE-SD). Supporting Claboratory program – Sorption diffusion experiments and rock material characterisation. With supplement of adsorption studies on intact rock samples from the Forsmark and Laxemar site investigations. Stockholm (Sweden), SKB: Svensk Kärnbränslehantering AB, Report R-10-66, 178pp.

Widestrand, H., Byegård, J., Kronberg, M., Nilsson, K., Höglund, S., Gustafsson, E., 2010b. Äspö Hard Rock Laboratory. Long Term Sorption Diffusion Experiment (LTDE-SD). Performance of main in-situ experiment and results from water phase measurements. Stockholm (Sweden), SKB: Svensk Kärnbränslehantering AB, Report R-10-67, 153pp.

Winberg, A., Hermanson, J., Tullborg, E-.L., Staub, I., 2003. Äspö Hard Rock Laboratory. Long-Term Diffusion Experiment. Structural model of the LTDE site and detailed description of the characteristics of the experimental volume including target structure and intact rock section. Stockholm (Sweden), SKB: Svensk Kärnbränslehantering AB, Report IPR-03-51, 153pp.

Wood, W.W., Kraemer, T.F., Hearn, P.P., 1990. Intragranular diffusion: an important mechanism influencing solute transport in classic aquifers? Science, 247, 1569-1572.

Zheng, Ch., 2010. MT3DMS v5.3 supplemental user’s guide. Technical Report to the U.S. Army Engineer Research and Development Center, USA, Department of Geological Sciences, University of Alabama, 51pp.

Zheng, Ch., Wang, P.P., 1999. MT3DMS: A modular threedimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems; documentation and user guide,

U.S. Vicksburg (MS, USA), Army Engineer Research and Development Center Contract Report SERDP-99-1, 220pp.

Zhou, Q., Liu, H-.H., Molz, F.J., Zhang, Y., Bodvarsson, G.S., 2007. Field-scale effective matrix diffusion coefficient for fractured rock: Results from literature survey. Journal of Contaminant Hydrology, 93, 161-187.

Downloads

Published

2022-07-28

Issue

Section

Articles