Stable isotope geochemistry of the Ulldemolins Pb-Zn-Cu deposit (SW Catalonian Coastal Ranges, Spain)

Authors

  • P. ALFONSO Departament d’Enginyeria Minera i Recursos Naturals, Universitat Politècnica de Catalunya (UPC). Av. de les Bases de Manresa 61-73, 08242 Manresa, Barcelona, Spain.
  • C. CANET Departamento de Recursos Naturales, Instituto de Geofísica, Universidad Nacional Autónoma de México. Ciudad Universitaria, Del. Coyoacán, México DF, 04510, Mexico
  • Joan-Carles Melgarejo i Draper Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB). C/ Martí i Franquès, s/n, Spain
  • J.M. MATA I PERELLÓ Departament d’Enginyeria Minera i Recursos Naturals, Universitat Politècnica de Catalunya (UPC). Av. de les Bases de Manresa 61-73, 08242 Manresa, Barcelona, Spain.
  • A.E. FALLIK Isotope Geosciences Unit, Scottish Universities Environmental Research Centre. East Kilbride, Glasgow, G75 0QF, Scotland (UK)

DOI:

https://doi.org/10.1344/105.000001707

Keywords:

Ore deposits, Skarn, Calcsilicates, Stable isotopes, Fluid inclusions

Abstract

The Pb-Zn-Cu deposit of Ulldemolins occurs within the Carboniferous sedimentary series of the southernmost Catalonian Coastal Ranges. It consists of sulphide-bearing calc-silicate assemblages, with epidote, Ca-amphiboles and Ca-garnet, which develop selectively along a dolomicrite bed near the contact with a granite porphyry. Two mineralisation styles can be differentiated: a) banded and b) irregular. Fluid inclusions and stable isotope compositions of sulphur in sulphides (sphalerite, galena and chalcopyrite) and carbon and oxygen in carbonates (calcite and dolomite) were studied in order to constrain the genesis and the source of mineralizing fluids. Fluid inclusions in sphalerite and calcite are aqueous, liquid+vapour and have a salinity between 1.2 and 7.2 wt% NaCl eq. and homogenization temperatures in the range of 273º to 368ºC. The δ4S(V-CDT) values in the banded mineralisation are mostly between –1.5 and +2.1‰, and those from the irregular mineralisation are between –1.1 and +20.5‰. These δ4S values of the banded mineralisation are in agreement with a magmatic origin of sulphur. In addition, the δ8O(SMOW) values of hydrothermal calcite, from +6.9 to +12.5‰, are consistent with a magmatic origin of the fluids that formed the banded ore deposit. Later, a new input of fluids interacted with the previously formed mineral assemblages and modified part of the deposit, leading locally to an irregular skarn mineralisation.

References

Alfonso, P., Canet, C., Melgarejo, J.C., Fallick, A.E., 2002. Sulphur isotope compositions of shale-hosted PGE-Ag-AuZn-Cu mineralisations of the Prades Mountains (Catalonia, Spain). Mineralium Deposita, 37, 198-212.

Anadón, P., Julivert, M., Sáez, A., 1985. El Carbonífero de las Cadenas Costeras Catalanas. In: Martínez, C. (ed.). X Congreso Internacional de Estratigrafía y Geología del Carbonífero y Pérmico en España. Madrid, Instituto Geológico y Minero de España (IGME), 99-106.

Ansdell, K.M., Nesbitt, B.E., Longstaffe, F.J., 1989. A fluid inclusion and stable isotope study of the Tom Ba-Pb-Zn deposit, Yukon Territory, Canada. Economic Geology, 84, 841-856.

Bakker, R.J., 2003. Package FLUIDS 1. New computer programs for the analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194, 3-23.

Blackwell, S., Zaw, K., 2001. A petrological and fluid inclusion study of magnetite–scheelite skarn mineralisation at Kara, Northwestern Tasmania: implications for ore genesis. Chemical Geology, 173, 239-253.

Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochimica et Cosmochimica Acta, 57, 683-684.

Canals, A., Cardellach, E., 1997. Ore lead and sulphur isotope pattern from the low-temperature veins of the Catalonian Coastal Ranges (NE Spain). Mineralium Deposita, 32, 243-249.

Canet, C., 2001. Dipòsits sedimentàrio-exhalatius del Paleozoic del SW dels Catalànides: model de dipòsit. Doctoral Thesis. Universitat de Barcelona, 442pp.

Canet, C., Alfonso, P., Melgarejo, J.C., Fallick, A.E., 2005. Stable isotope geochemistry of the carboniferous Zn-PbCu sediment-hosted sulphide deposits from the southern Catalonian Coastal Ranges, Spain. International Geology Review, 47, 1298-1315.

Canet, C., Camprubí, A., González-Partida, E., Linares, C., Alfonso, P., Piñeiro-Fernández, F., Prol-Ledesma, R.M., 2009. Mineral assemblages of the Francisco I. Madero ZnCu-Pb-(Ag) deposit, Zacatecas, Mexico: implications for ore deposit genesis. Ore Geology Reviews, 35, 423-435.

Ciobanu, C.L., Cook, N.J., 2004, Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania. Ore

Geology Reviews, 24, 315-370.

Einaudi, M.T., 1982. General features and origin of skarns associated with porphyry copper plutons, southwestern North America. In: Titley, S.R. (ed.). Advances in Geology of the Porphyry Copper Deposits, Southwestern U.S. United States of America (USA), University of Arizona Press, 185-209.

Enrique, P., Debon, F., 1987. Le pluton permien calcoalcalin du Montnegre (Chaînes Cotières Catalanes, Espagne); étude isotopique Rb-Sr et comparaison avec les granites hercyniens des Pyrénées, Sardaigne et Corse. Les Comptes Rendus de l’Académie des Sciences de Paris, série II, 35, 1157-1162.

Fallick, A.E., McConville, P., Boyce, A.J., Burgess, R., Kelley, S.P., 1992. Laser microprobe stable isotope measurements on geological materials. Some experimental considerations (with special reference to δ34S in sulphides). Chemical Geology, 101, 53-61.

Gardner, H.D., Hutchinson, I., 1985. Geochemistry, mineralogy and geology of the Janson Pb-Zn deposits, Macmillan Pass, Yukon, Canada. Economic Geology, 80, 1257-1276.

Giesemann, A., Jäger, H.J., Norman, A.L., Krouse, H.R., Brand, W.A., 1994. On-line sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer. Analytical Chemistry. 66, 2816-2819.

Hall, A.J., McConville, P., Boyce, A.J., Fallick, A.E., 1994. Sulphides with high δ34S from the Late Precambrian Bonahaven Dolomite, Argyll, Scotland. Mineralogical Magazine, 58, 486-490.

Haynes, F.M, Kesler, S.E., 1988. Compositions and sources of mineralizing fluid for chimney and manto limestonereplacement ores in Mexico. Economic Geology, 83, 1985-1992.

Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J., Maresch, W.V., Nickel, E.H., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Canadian Mineralogist, 35, 219-246.

Logan, A.M.V., 2000. Mineralogy and geochemistry of the Gualilán skarn deposit in the Precordillera of western Argentina. Ore Geology Reviews, 17, 113-138.

McCrea, J.M., 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics, 18,

-857.

Meinert, L.D., 1993. Igneous petrogenesis and skarn deposits. Geological Association of Canada, 40 (Special Paper), 569-583.

Meinert, L.D., Dipple, G.M., Nicolescu, S., 2005. World skarn deposits. Economic Geology, 100th Anniversary Volume, 299-

Melgarejo, J.C., 1992. Estudio geológico y metalogenético del Paleozoico del sur de las Cordilleras Costero Catalanas. Memorias del Instituto Tecnológico Geominero de España, 103, 605pp.

Melgarejo, J.C., Ayora, C., 1984. Mineralización filoniana de tungsteno en rocas graníticas del sector S de las Cordilleras Costero Catalanas. Boletín Geológico y Minero de España, 95, 235-245.

Niiranen, T., Mänttäri, I., Poutiainen, M., Oliver, N.H.S., Millar, J.A., 2005. Genesis of Palaeoproterozoic iron skarns in the Misi

region, northern Finland. Mineralium Deposita, 40, 192-217.

Ohmoto, H., Rye, R.O., 1979. Isotopes of sulfur and carbon. In: Barnes, H.L. (ed.). Geochemistry of Hydrothermal Ore Deposits. New York, Willey and Sons, 2nd edition, 509-567.

O’Neil, J.R., Clayton, R.N., Mayeda, T.K., 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics, 51, 5547-5558.

Peter, J.M., Scott, S.D., Shanks, W.C.III, Woodruff, L.G., 1986. Geochemical, mineralogical, fluid inclusion and stable isotope studies of hydrothermal vent precipitates, Guaymas Basin, Gulf of California. In: Turner, R.J.W., Einaudi, M.T., (eds.). The genesis of stratiform sediment-hosted lead and zinc deposits. Conference Proceedings. Stanford University Publications in the Geological Sciences, 20, 151-155.

Roedder, E., 1984. Fluid Inclusions. In: Ribbe, P.H. (ed.). Reviews in mineralogy, 12. Mineralogical Society of America, Reviews in Mineralogy, 12, 644pp.

Sáez, A., 1982. Estudio estratigráfico y sedimentológico de los materiales paleozoicos de la parte central del Priorat (Tarragona). PhD. Thesis. Universitat de Barcelona, 86pp.

Samson, I.M., Russell, M.J., 1987. Genesis of the Silvermines zinc-lead-barite deposit, Ireland: fluid inclusion and stable isotope evidence. Economic Geology, 82, 371-394.

Sanz-López, J., Melgarejo, J.C., Crimes, Th.J., 2000. Stratigraphy of Lower Cambrian and unconformable Lower Carboniferous beds from the Valls Unit (Catalonian Coastal Ranges). Les Comptes Rendus de l’Académie des Sciences de Paris, série IIa, Sciences de la Terre, 330, 147-153.

Vilaseca, S., 1973. Reus y su entorno en la prehistoria, volume I-II. Reus (Spain), Asociación de Estudios Reusenses, 286pp.

Downloads

Published

2012-07-20

Issue

Section

Articles

Most read articles by the same author(s)