Origin and evolution of Neoproterozoic metaophiolitic mantle rocks from the eastern Desert of Egypt: Implications for tectonic and metamorphic events in the Arabian-Nubian Shield


  • Shehata Ali Geology Department, Faculty of Science, Minia University, 61519 El–Minia, Egypt https://orcid.org/0000-0002-0845-9268
  • Mokhles Azer
  • Abdel-Aal Abdel-Karim




Mantle rocks, Ophiolite, Neoproterozoic serpentinite, Chromite, Eastern Desert, Egypt


The mantle rocks from Kadaboura and Madara areas represent sections of dismembered ophiolitic complexes developed during the Neoproterozoic in the Eastern Desert of Egypt, which is located in the northwestern corner of the Arabian–Nubian Shield. The Kadaboura mantle rocks comprise serpentinites and serpentinized dunites, whereas those of the Madara consist of serpentinites and serpentinized pyroxenites.
Despite the serpentinization of the studied mantle rocks, few relicts of primary chromite, olivine and pyroxene are preserved. Chromite is partly altered having unaltered Al-rich chromite cores surrounded by Fe-rich chromite and Cr-rich magnetite rims. The unaltered Al-rich chromite cores show compositions equilibrated at temperatures mostly below ~500-600°C, which is a temperature comparable to that estimated for primary chromite in greenschist up to lower amphibolite facies rocks. The high Cr# [100×Cr/(Cr+Al)= 47-76] of the unaltered chromite cores and the Mg-rich nature of the olivine relicts (Fo91–94) indicate that the studied mantle rocks were produced from a highly depleted mantle that experienced high degrees of melt extraction (mostly ~30-40%). This range of melt extraction resembles that estimated for supra-subduction zone peridotites, but higher than that in abyssal and passive margin peridotites. Furthermore, the clinopyroxene relicts show compositions comparable to those from the Mariana forearc peridotites. Bulk-rock geochemistry also reflects derivation from an extremely depleted and a highly refractory mantle source. Modelling of rare-earth elements suggests that the studied mantle rocks were possibly formed by the interaction of their highly depleted harzburgitic mantle precursors with subduction-related melts/fluids during their evolution in a fore-arc basin of the supra-subduction zone.
The proposed geodynamic model suggests that the oceanic lithosphere generated during the seafloor spreading of the Mozambique Ocean was emplaced in the upper plate of the intra-oceanic subduction zone, in which the formely depleted Neoproterozoic mantle of the Arabian-Nubian Shield experienced mature phases of hydrous melting, extreme depletion and enrichment.


Abd El-Rahman, Y., Helmy, H.M., Shibata, T., Yoshikawa, M., Arai, S., Tamura, A., 2012. Mineral chemistry of the Neoproterozoic Alaskan-type Akarem Intrusion with special emphasis on amphibole: Implications for the pluton origin and evolution of subduction-related magma. Lithos, 155, 410-425.

Abdallah, S.E., Ali, S., Obeid, M.A., 2019. Geochemistry of an Alaskan-type mafic-ultramafic complex in Eastern Desert, Egypt: New insights and constraints on the Neoproterozoic island arc magmatism. Geoscience Frontiers, 10(3), 941-955. DOI:10.1016/j.gsf.2018.04.009

Abdel Halim, A., Helmy, H.M., Abdel-Rahman, Y.M., Shibata, T., El-Mahallawi, M.M., Yoshikawa, M., Arai, S., 2016. Petrology of the Motaghairat mafic–ultramafic complex, Eastern Desert, Egypt: a high-Mg post-collisional extension-related layered intrusion. Journal of Asian Earth Sciences, 116, 164-180.

Abdel-Karim, A.M., Hemimi, Z., El-Sherbenyi, A.T., 1997. Petrology and geochemistry of Umm Battat younger gabbros, central Eastern Desert, Egypt. Egyptian Journal of Geology, 41/2B, 605-625.

Abdel-Karim, A.M., Soliman, M.M., El-Kazzaz, Y., Mazhar, A.A., Abdel-Gawad, G.A., 2001. Geological and geochemical characteristics of the mafic–ultramafic rocks of Gabal Garf area, south Eastern Desert, Egypt. Annals of the Geological Survey of Egypt, XXIV, 193-218.

Abdel-Karim, A.M., Azzaz, S.A., Moharem, A.F., El-Alfy, H., 2008. Petrological and geochemical studies on the ophiolite and island arc association of Wadi Hammaryia, Egypt. Arabian Journal for Science and Engineering, 33(1C), 117-138.

Abdel-Karim, A.M., Ahmed, Z., 2010. Possible origin of the ophiolites of Eastern Desert of Egypt, from geochemical prospectives. Arabian Journal for Science and Engineering, 34, 1-27.

Abdel-Karim, A.M., Ali, S., Helmy, H.M., El-Shafei, S.A., 2016. Fore-arc setting of the Gerf ophiolite, Eastern Desert, Egypt: evidence from mineral chemistry and geochemistry of ultramafites. Lithos, 263, 52-65.

Abdel-Karim, A.M., Ali, S., El-Shafei, S.A., 2018. Mineral chemistry and geochemistry of ophiolitic metaultramafics from Um Halham and Fawakhir, Central Eastern Desert, Egypt International Journal of Earth Sciences, 107, 2337-2355. DOI: 10.1007/s00531-018-1601-2

Abdel-Karim, A.M., El-Shafei, S.A., Azer M.K., 2021. The Neoproterozoic ophiolitic ultramafic rocks in Eastern Desert of Egypt: implications for petrogenesis and metasomatic processes. Internal Geology Review, 92, 1-25. DOI: 10.1080/00206814.2019.1708816

Abu-Alam, T.S., Santosh, M., Brown, M., Stüwe, K., 2013. Gondwana collision. Mineralogy and Petrology, 107, 631-634.

Abu El-Ela, A.M., 1996. Contribution to mineralogy and geochemistry of some serpentinites from the Eastern Desert of Egypt. Middle East Research Center. Ain Shams University, Earth Science, 10, 1-25.

Abuamarah, B.A., Asimow, P.D., Azer, M.K., Ghrefat, H., 2020. Suprasubduction-zone origin of the podiform chromitites of the Bir Tuluhah ophiolite, Saudi Arabia, during Neoproterozoic assembly of the Arabian Shield. Lithos, 360-361, 105439.

Ahmed, A.A., 1991. Ultrabasic and basic intrusions of Um Ginud and Motaghairat area, South Eastern Desert, Egypt. Bulletin of the Faculty of Science-Assuit University, 20, 183-213.

Ahmed, A.H., Gharib, M.E., Arai, S., 2012. Characterization of the thermally metamorphosed mantle–crust transition zone of the Neoproterozoic ophiolite at Gebel Mudarjaj, south Eastern Desert, Egypt. Lithos, 142-143, 67-83.

Ahmed, A.H., Habtoor, A., 2015. Heterogeneously depleted Precambrian lithosphere deduced from mantle peridotites and associated chromitite deposits of Al’Ays ophiolite, Northwestern Arabian Shield, Saudi Arabia. Ore Geology Reviews, 67, 279-296.

Ali, K.A., Azer, M.K., Gahlan, H.A., Wilde, S.A., Samuel, M.D., Stern, R.J., 2010. Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi Suture, south Eastern Desert, Egypt. Gondwana Research, 18, 583-595.

Ali, S., Abart, R., Sayyed, M.I., Hauzenberger, C.A., Sami, M., 2023. Petrogenesis of the Wadi El-Faliq Gabbroic Intrusion in the Central Eastern Desert of Egypt: Implications for Neoproterozoic Post-Collisional Magmatism Associated with the Najd Fault System. Minerals, 13 (1), 10. https://doi.org/10.3390/min13010010

Ali, S., Ntaflos, T., Sami, M., 2021. Geochemistry of Khor UmSafi ophiolitic serpentinites, central Eastern Desert, Egypt: Implications for Neoproterozoic arc-basin system in the Arabian-Nubian Shield. Geochemistry, 81(1), 125690. DOI: 10.1016/j.chemer.2020.125690

Allen, D.E., Seyfried, Jr., E., 2003. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400ºC, 500 bars. Geochimica et Cosmochimica Acta, 67(8), 1531-1542.

Anzil, P.A., Guereschi, A.B., Martino, R.D., 2012. Mineral chemistry and geothermometry using relict primary minerals in the La Cocha ultramafic body: a slice of the upper mantle in the Sierra Chica of Cordoba, Sierras Pampeanas, Argentina. Journal of South America Earth Science, 40, 38-52.

Arai, S., 1994. Characterization of spinel peridotites by olivine–spinel compositional relationships: review and interpretation. Chemical Geology, 113, 191-204.

Arai, S., Kadoshima, K., Morishita, T., 2006. Widespread arcrelated melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian spinels. Journal of the Geological Society, 163, 869-879.

Azer, M.K., Khalil, A.E.S., 2005. Petrological and mineralogical studies of Pan-African serpentinites at Bir Al-Edeid area, central Eastern Desert, Egypt. Journal of African Earth Sciences, 43, 525-536.

Azer, M.K., Stern, R.J., 2007. Neoproterozoic (835-720 Ma) serpentinites in the Eastern Desert, Egypt: fragments of forearc mantle. Geology, 115, 457-472.

Azer, M.K., El-Gharbawy, R.I., 2011. Contribution to the Neoproterozoic layered mafic-ultramafic intrusion of Gabal Imleih, south Sinai, Egypt: Implication of post-collisional magmatism in the north Arabian-Nubian Shield. Journal of African Earth Sciences, 60, 253-272.

Azer, M.K., Samuel, M.D., Ali, K.A., Gahlan, H.A., Stern, R.J., Ren, M., Moussa, H.E., 2013. Neoproterozoic ophiolitic peridotites along the Allaqi–Heiani Suture, South Eastern Desert, Egypt. Mineralogy and Petrology, 107(5), 829-848.

Azer, M.K., Obeid, M.A., Gahlan, H.A., 2016. Late Neoproterozoic layered mafic intrusion of arc-affinity in the Arabian-Nubian Shield: A case study from the Shahira layered mafic intrusion, southern Sinai, Egypt. Geologica Acta, 14(3), 237-259.

Azer, M.K., Gahlan, H.A., Asimow, P.D., Al-Kahtany, K.M., 2017. The Late Neoproterozoic Dahanib mafic-ultramafic intrusion, South Eastern Desert, Egypt: is it an Alaskan-type or a layered intrusion? American Journal of Science, 317, 901-940.

Azer, M.K., Gahlan, H.A., Asimow, P.D., Mubarak, H.S., AlKahtany, K.M., 2019. Multiple stages of carbonation and element redistribution during formation of ultramafic-hosted magnesite in Neoproterozoic ophiolites of the ArabianNubian Shield, Egypt. Journal of Geology, 127, 81-107.

Barnes, S.I., 2000. Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. Journal of Petrology, 41(3), 387-409.

Barnes, S.J., Roeder, P.L., 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42(12), 2279-2302.

Beccaluva, L., Macciota, G., Piccardo, G.B., Zeda, O., 1989. Clinopyroxene composition of ophiolitic basalts as petrogenetic indicator. Chemical Geology, 77, 165-182.

Berly, T.J., Hermann, J., Arculus, R.J., Lapierre, H., 2006. Suprasubduction zone pyroxenites from San Jore and Santa Isabel (Solomon Islands). Journal of Petrology, 47, 1531-1555.

Bodinier, J.L., Godard, M., 2003. Orogenic, ophiolitic, and abyssal peridotites. In: Carlson, R.W. (ed.). The Mantle and Core: Treatise on Geochemistry. Amsterdam, Elsevier Science Ltd., 2nd edition, 103-170.

Bonatti, E., Michael, P.J., 1989. Mantle peridotites from continental rifts to oceanic basins to subduction zones. Earth and Planetary Science Letters, 91, 297-311.

Boskabadi, A., Pitcairn, I.K., Broman, C., Boyce, A., Teagle, D.A.H., Cooper, M.J., Azer, M.K., Stern, R.J., Mohamed, F.H., Majka, J., 2017. Carbonate alteration of ophiolitic rocks in the Arabian–Nubian Shield of Egypt: sources and compositions of the carbonating fluid and implications for the formation of Au deposits. International Geology Review, 59(4), 391-419.

Cathelineau, M., Nieva, D., 1985. A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Contribution to Mineralogy and Petrology, 91, 235-244. DOI: 10.1007/BF00413350

Chalot-Prat, F., Ganne, J., Lombard, A., 2003. No significant element transfer from the oceanic plate to the mantle wedge during subduction and exhumation of the Tethys lithosphere (Western Alps). Lithos, 69, 69-103.

Choi, S.H., Shervais, J.W., Mukasa, S.B., 2008. Supra-subduction and abyssal mantle peridotites of the coast range ophiolite, California. Contributions to Mineralogy and Petrology, 156, 551-576.

Coleman, R.G., 1977. Ophiolites. Berlin, Springer-Verlag, 229pp.

Deer, W.A., Howie, R.A., Zussman, J., 1992. An introduction to the rock forming minerals. London, Longman Scientific and Technical, 2nd edition, 696pp.

Delavari, M., Amini, S., Saccani, E., Beccaluva, L., 2009. Geochemistry and petrogenesis of mantle peridotites from the Nehbandan Ophiolitic Complex, eastern Iran. Journal of Applied Science, 9(15), 2671-2687.

Deschamps, F., Godar, M., Guillot, S., Hattori, K., 2013. Geochemistry of subduction zone serpentinites: a review. Lithos, 178, 96-127.

Dick, H.B., Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contribution to Mineralogy and Petrology, 86, 54-76.

Dixon, T.H., 1981. Gebel Dahanib, Egypt: a late Precambrian layered sill of komatiitic composition. Contributions to Mineralogy and Petrology, 76, 42–52.

Dungan, M.A., 1979. A microprobe study of antigorite and some serpentine pseudomorphs. Canadian Mineralogist, 17, 711-784.

El Bahariya, G.A., 2018. Classification of the Neoproterozoic ophiolites of the Central Eastern Desert, Egypt based on field geological characteristics and mode of occurrence. Arabian Journal of Geosciences, 11, 313pp. DOI: 10.1007/s12517-018-3677-1

El Bahariya, G.A., Arai, S., 2003. Petrology and origin of PanAfrican serpentinites with particular reference to chromian spinel compositions, Eastern Desert, Egypt: implication for supra-subduction zone ophiolite. Third International Conference on the Geology of Africa, Egypt, Assiut University, 371-388.

El-Sayed, M.M., Furnes, H., Mohamed, F.H., 1999. Geochemical constraints on the tectonomagmatic evolution of the late Precambrian Fawakhir ophiolite, central Eastern Desert, Egypt. Journal of African Earth Science, 29, 515-533.

El-Sharkawy, M.A., El-Bayoumi, R., 1979. The ophiolites of Wadi Ghadir area, Eastern Desert, Egypt. Annal Geological Survey Egypt, 9, 125-135.

Engin, T., Balci, M., Sümer, Y., Özkan, Y.Z., 1980. Guleman (Elazig) krom yataklari ve peridotit biriminin genel jeolojik konumu ve yapisal özellikleri. Maden Tetkik ve Arama Dergisi, 95-96, 77-101.

Evans, B., Frost, B., 1975. Chrome spinel in progressive metamorphism: a preliminary analysis. Geochimica et Cosmochimica Acta, 39, 379-414.

Farahat, E.S., Helmy, H.M., 2006. Abu Hamamid Neoproterozoic Alaskan-type complex, south Eastern Desert, Egypt. Journal

of African Earth Sciences, 45, 187-197.

Farahat, E.S., Hoinkes, G., Mogessie, A., 2011. Petrogenetic and geotectonic significance of Neoproterozoic suprasubduction mantle as revealed by the Wizer ophiolite complex, Central Eastern Desert, Egypt. International Journal of Earth Sciences, 100, 1433-1450.

Floyd, P.A., 1991. Oceanic basalts. New York, Blachie and Son Ltd, 456pp.

Gahlan, H.A., Arai, S., 2009. Carbonate-orthopyroxenite lenses from the Neoproterozoic Gerf ophiolite, South Eastern Desert, Egypt: The first record in the Arabian Nubian shield ophiolites. Journal of African Earth Sciences, 53, 70-82. DOI: 10.1016/j.jafrearsci.2008.09.005

Gahlan, H.A., Azer, M.K., Khalil, A.E.S., 2015. The Neoproterozoic Abu Dahr ophiolite, South Eastern Desert, Egypt: Petrological characteristics and tectonomagmatic evolution. Mineralogy and Petrology, 109, 611-630.

Gahlan, H.A., Azer, M.K., Asimow, P.D., 2018. On the relative timing of listwaenite formation and chromian spinel equilibration in serpentinites. American Mineralogist, 103, 1087-1102.

Gahlan, H.A., Azer, M.K., Asimow, P.D., Mubarak, H.S., AlKahtany, K.M., 2020. Petrological characteristics of the Neoproterozoic Ess ophiolite mantle section, Arabian Shield, Saudi Arabia: a mineral chemistry perspective. International

Journal of Earth Sciences, 109, 239-251.

Gahlan, H.A., Azer, M.K., Al-Hashim, M.H., Osman, M.S., 2022. New insights and constraints on the late Neoproterozoic postcollisional mafic magmatism in the Arabian Shield, Saudi Arabia. Lithos, 436-437 (January 2023), 106989.

Gamal El Dien, H.M., Hamdy, M.M., Abu El Ela, A., Abu Alam, T., Hassan, A., Kil, Y., Mizukami, T., Soda, Y., 2016. Neoproterozoic serpentinites from the Eastern Desert of Egypt: Insights into Neoproterozoic mantle geodynamics and processes beneath the Arabian–Nubian Shield. Precambrian Research, 286, 213-233. DOI: 10.1016/j.precamres.2016.10.006

Gervilla, F., Padrón-Navarta, J.A., Kerestedjian, T., Sergeeva, I., González-Jiménez, J.M., Fanlo, I., 2012. Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: a two-stage process. Contributions to Mineralogy and Petrology, 164(4), 643-657.

Ghoneim, M.F., 1989. Mineral chemistry of some gabbroic rocks of the central Eastern Desert, Egypt. Journal of African Earth Sciences, 9, 289-295.

Girardeau, J., Mevel, C., 1982. Amphibolized sheared gabbros from ophiolites as indicators of the evolution of the oceanic crust: Bay of islands, Newfoundland. Earth and Planetary Science Letters, 61, 151-165.

Gruau, G., Bernard-Griffiths, J., Lécuyer, C., 1998. The origin of U-shaped rare earth patterns in ophiolite peridotites: assessing the role of secondary alteration and melt/rock reaction. Geochimica et Cosmochimica Acta, 62(21/22), 3545-3560.

Hart, S.R., Zindler, A., 1986. In search of a bulk-Earth composition. Chemical Geology, 57, 247-267.

Hassan, S.F., Sadek, M.F., 2017. Geological mapping and spectral based classification of basement rocks using remote sensing data analysis: The Korbiai-Gerf nappe complex, South Eastern Desert, Egypt. Journal of African Earth Sciences, 134, 404-418.

Hattori, K.H., Guillot, S., 2007. Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochemistry, Geophysics, Geosystems, 8(9). Q09010. DOI: http://dx.doi.org/10.1029/2007GC001594

Hellebrand, E., Snow, J.E., Dick, H.J.B., Hofmann, A.W., 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature, 410, 677-681.

Helmy, H.M., 2005. Melonite group minerals and other tellurides from three Cu-Ni-PGE prospects, Eastern Desert, Egypt. Ore Geology Reviews, 26, 305-324.

Helmy, H.M., El Mahallawi, M.M., 2003. Gabbro Akarem mafic-ultramafic complex, Eastern Desert, Egypt: a Late Precambrian analogue of Alaskan-type complex. Mineralogy and Petrology, 77, 85-108.

Helmy, H.M., Yoshikawa, M., Shibata, T., Arai, S., Kagami, H., 2015. Sm-Nd dating and petrology of Abu Hamamid intrusion, Eastern Desert, Egypt: a case of Neoproterozoic Alaskan-type complex in a backarc setting. Precambrian Research, 258, 234-246.

Hey, M.H., 1954. A new review of the chlorites. Mineralogical Magazine, 30, 277-292.

Ishii, T., Robinson, P.T., Maekawa, H., Fiske, R., 1992. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, leg 125. In: Fryer, P., Pearce, J.A., Stokking, L.B. (eds.). Proceedings of the Ocean Drilling Project, Leg 125. Scientific Results (College Station), 445-485.

Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V., Wanke, H., 1979. The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. Proceedings of Lunar Planetary Science Conference, 10, 2031-2050.

Jöns, N., Schenk, V., 2007. Relics of the Mozambique Ocean in the central Eastern African Orogen: evidence from the Vohibory Block of southern Madagascar. Journal of Metamorphic Geology, 26, 17-28.

JunBing, C., ZhiGang, Z., 2007. Metasomatism of the peridotites from southern Mariana fore-arc: Trace element characteristics of clinopyroxene and amphibole. Science in China Series D: Earth Sciences, 50, 1005-1012. DOI: 10.1007/s11430-007-0023-y

Kamenetsky, V.S., Crawford, A.J., Meffre, S., 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42(4), 655-671. DOI: 10.1093/petrology/42.4.655

Kapsiotis, A., Grammatikopoulos, T.A., Tsikouras, B., Hatzipanagiotou, K., 2009. Chromian spinel composition and platinum-group element mineralogy of chromitites from the Milia area, Pindos ophiolite complex, Greece. The Canadian Mineralogist, 47(5), 1037-1056. DOI: 10.3749/canmin.47.5.1037

Kepezhinskas, P.K., Taylor, R.N., Tanaka, H., 1993. Geochemistry of plutonic spinels from the north Kamchatka arc: comparisons with spinels from other tectonic settings. Mineralogical Magazine, 57, 575-589.

Khalil, K.I., 2007. Chromite mineralization in ultramafic rocks of the Wadi Ghadir area, Eastern Desert, Egypt: mineralogical,

microchemical and genetic study. Neues Jahrbcuh für Mineralogie - Abhandlungen, 183, 283-296.

Khalil, A.E.S., Azer, M.K., 2007. Supra-subduction affinity in the Neoproterozoic serpentinites in the Eastern Desert, Egypt: evidence from mineral composition. Journal of African Earth Sciences, 49, 136-152.

Khalil, A.E.S., Obeid, M.A., Azer, M.K., 2014. Serpentinized peridotites at the north part of Wadi Allaqi district (Egypt): Implications for the tectono-magmatic evolution of fore-arc crust. Acta Geologica Sinica, 88(5), 1421-1436.

Khedr, M.Z., Arai, S., 2012. Petrology and geochemistry of prograde deserpentinized peridotites from Happo-Óne, Japan: Evidence of element mobility during deserpentinization. Journal of Asian Earth Science, 43, 150-163. DOI: 10.1016/j.jseaes.2011.08.017

Khedr, M.Z., Arai, S., 2013. Origin of Neoproterozoic ophiolitic peridotites in south Eastern Desert, Egypt, constrained from

primary mantle mineral chemistry. Mineralogy and Petrology, 107(5), 807-828.

Khedr, M.Z., Arai, S., 2017. Peridotite-chromitite complexes in the Eastern Desert of Egypt: Insight into Neoproterozoic subarc mantle processes. Gondwana Research, 52, 59-79. DOI: 10.1016/j.gr.2017.09.001

Kimball, K.L., Spear, F.S., Dick, H.J.B., 1985. High temperature alteration of abyssal ultramafics from the Islas Orcadas fracture zone, south Atlantic. Contributions to Mineralogy and Petrology, 91, 307-320. DOI: 10.1007/BF00374687

Kodolanyi, J., Pettke, T., Spandler, C., Kamber, B.S., Gmeling, K., 2012. Geochemistry of Ocean Floor and Fore-arc Serpentinites: Constraints on the Ultramafic Input to Subduction Zones. Journal of Petrology, 53(2), 235-270.

Le Bas, M.J., 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage. American Journal of Science, 260, 267-288. DOI: 10.2475/ajs.260.4.267

Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawhorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist: Journal of Earth and Planetary Materials, 82, 1019-1037.

Martin, B., Fyfe, W.S., 1970. Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization. Chemical Geology, 6, 185-202.

McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chemical Geology, 120, 223-253.

Mellini, M., Rumori, C., Viti, C., 2005. Hydrothermally reset magmatic spinels in retrograde serpentinites: formation of “ferritchromit” rims and chlorite aureoles. Contributions to Mineralogy and Petrology, 149, 266-275.

Mével, C., 2003. Serpentinization of abyssal peridotites at midocean ridges. Comptes Rendus Géoscience, 335, 825-852.

Michael, P.J., Bonatti, E., 1985. Peridotite composition from the North Atlantic; regional and tectonic variations and implications for partial melting. Earth and Planetary Science Letters, 73, 91-104.

Morimoto, N.F.J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussmaann, I., 1988. Nomenclature of pyroxene. Mineralogical Magazine, 52, 535-550. DOI: 10.1180/minmag.1988.052.367.15

Moussa, H.E., Azer, M.K., Abou El Maaty, M.A., Maurice, A.E., Yanni, N.N., Akarish, A.I., Elnazer, A.A., Elsagheer, M.A., 2021. Carbonation of Neoproterozoic mantle section and formation of gold-bearing listvenite in the Northern Nubian Shield. Lithos, 406-407, 106525.

Moussa, H.E., Mubarak, H.S., Azer, M.K., Surour, A.A., Asimow, P.D., Kabesh, M.M., 2022. Multistage petrogenetic evolution of Neoproterozoic serpentinized ultramafic rocks and podiform chromitites at Hagar Dungash, Eastern Desert of Egypt. Precambrian Research, 369, 106507.

Murata, K., Maekawa, H., Yokose, H., Yamamoto, K., Fujioka, K., Ishii, T., Chiba, H., Wada, Y., 2009. Significance of serpentinization of wedge mantle peridotites beneath Mariana forearc, western Pacific. Geosphere, 5, 90-104. DOI: 10.1130/GES00213.1

Müntener, O., Kelemen, P., Grove, T.L., 2001. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contributions to Mineralogy and Petrology, 141, 643-658.

Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12), 2423-2458.

Nozaka, T., 2010. A note on compositional variation of olivine and pyroxene in thermally metamorphosed ultramafic complexes from SW Japan. Okayama University, Earth Science Reports, 17(1), 1–5.

Obeid, M.A., Khalil, A.E.S., Azer, M.K., 2016. Mineralogy, geochemistry and geotectonic significance of the Neoproterozoic ophiolite of Wadi Arais area, south Eastern Desert, Egypt. International Geology Reviews, 58, 687-702. DOI: 10.1080/00206814.2015.1105727

Olivier, N., Boyet, M., 2006. Rare earth and trace elements of microbialites in Upper Jurassic coral- and sponge-microbialite

reefs. Chemical Geology, 230, 105-123.

Ozawa, K., 1994. Melting and melt segregation in the mantle wedge above a subduction zone; evidence from the chromitebearing peridotites of the Miyamori ophiolite complex, northeastern Japan. Journal of Petrology, 35, 647-678.

Parkinson, I.J., Arculus, R.J., 1999. The redox state of subduction zone: insights from arc peridotites. Chemical Geology, 160,


Parkinson, I.J., Pearce, J.A., 1998. Peridotites from the Izu–Bonin–Mariana fore-arc (ODP Leg125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39, 1577-1618.

Paulick, H., Bach, W., Godard, M., De Hoog, J.C.M., Suhr, G., Harvey, J., 2006. Geochemistry of abyssal peridotites (MidAtlantic Ridge, 15º20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234, 179-210.

Peacock, S.M., 1987. Serpentinization and infiltration metasomatism in the trinity peridotite, Klamath province, northern California: Implications for subduction zones. Contributions to Mineralogy and Petrology, 95, 55-70. DOI: 10.1007/BF00518030

Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., Leat, P.T., 2000. Geochemistry and tectonic significance of peridotites from the south sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139, 36–53.

Pfeifer, H.-R., 1979. Fluid-Gestein-Interaktion in metamorphen Ultramafititen der Zentralalpen. Dissertatioen, ETH-Zürich. DOI: https://doi.org/10.3929/ethz-a-000185051

Python, M., Ceuleneer, G., Arai, S., 2008. Chromian spinels in mafic–ultramafic mantle dykes: Evidence for a two-stage melt production during the evolution of the Oman ophiolite. Lithos, 106, 137-154.

Roberts, S., 1992. Influence of partial melting regime on the formation of ophiolitic chromite. In: Parson, L.M., Murton, B.J., Browning, P. (eds.). Ophiolites and their Modern Oceanic Analogues. Geological Society, 6 (Special Publication), 203-217.

Sack, R.O., Ghiorso, M.S., 1991. Chromian spinels as petrogenetic indicators: thermodynamic and petrological applications.

American Mineralogist, 76, 827-847.

Salters, V.J.M., Stracke, A., 2004. Composition of the depleted mantle. Geochemestry, Geophysics, Geosystems, 5(5), Q05B07. DOI: 10.1029/2003GC0005 97

Sedki, T., Ali, S., Mohamed, H.A., 2019. Geochemistry dataset of the Sol Hamed Neoproterozoic ophiolitic serpentinites, southern Eastern Desert, Egypt. Data in brief, 25, 104393. DOI: 10.1016/j.dib.2019.104393

Shackleton, R.M., 1994. Review of late Proterozoic sutures, ophiolitic mélanges and tectonics of eastern Egypt and North Sudan. Geologische Rundschau, 83, 537-546.

Sharma, M., Wasserburg, G.J., 1996. The neodymium isotopic compositions and rare earth patterns in highly depleted ultramafic rocks. Geochimica et Cosmochimica Acta, 60, 4537-4550.

Snow, J.E., Dick, H.J.B., 1995. Pervasive magnesium loss by marine weathering of peridotite. Geochimica et Cosmochimica Acta, 59, 4219-4235.

Stern, R.J., Fouch, M.J., Klemperer, S., 2003. An overview of the Izu-Bonin-Mariana Subduction Factory. In: Eiler, J., Hirschmann, M. (eds.). Inside the subduction factory. American Geophysical Union, Geophysical monograph, 138, 175-222.

Stern, R.J., Johnson, P.J., Kröner, A., Yibas, B., 2004. Neoproterozoic ophiolites of the Arabian–Nubian Shield. In: Kusky, T. (ed.). Precambrian Ophiolites. Elsevier, 13, 95–128.

Stevens, R.E., 1944, Composition of some Cr-spinels of the western hemisphere: American Mineralogist, 29(1-2), 1-34.

Suita, M., Strieder, A., 1996. Cr-spinels from Brazilian mafic–ultramafic complexes: metamorphic modifications. International Geology Review, 38(3), 245–267.

Sun, S.-S., Nesbitt, R.W., 1978. Geochemical irregularities and genetic significance of ophiolitic basalts. Geology, 6, 689-693.

Sun, S.S., McDonough, W.F., 1989. Chemical and systematic of Ocean basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (eds.). Magmatism in Ocean Basins. London, The Geological Society, 42 (Special Publications), 42, 313-345.

Surour, A.A., 2017. Chemistry of serpentine “polymorphs” in the Pan-African serpentinites from the Eastern Desert of Egypt,

with an emphasis on the effect of superimposed thermal metamorphism. Mineralogy and Petrology, 111, 99-119.

Takahashi, E., 1987, Origin of basaltic magmas–Implications from peridotite melting experiments and an olivine fractionation model. Bulletin of the Volcanological Society of Japan, 30, 17-40.

Whattam, S.A., Stern, R.J., 2011. The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs and subduction initiation. Contributions to Mineralogy and Petrology, 162, 1031-1045.

Yang, S.-H., Zhou, M.-F., 2009. Geochemistry of the ~430-Ma Jingbulake mafic‒ultramafic intrusion in Western Xinjiang, NM China: implications for subduction related magmatism in the South Tianshan orogenic belt. Lithos, 113, 259-273.

Zimmer, M., Kröner, A., Jochum, K.P., Reischmann, T., Todt, W., 1995. The Gabal Gerf complex: a Precambrian N-MORB ophiolite in the Nubian Shield, NE Africa. Chemical Geology, 123, 29-51.