The elusive crustal resistive boundary beneath the Deccan Volcanic Province and the western Dharwar craton, India

Authors

  • Pratap Akkapolu
  • Pradeep Naick Bukke
  • Kusham
  • Rama Rao Paluri
  • Naganjaneyulu Kasturi National Geophysical Research Institute

DOI:

https://doi.org/10.1344/GeologicaActa2023.21.2

Keywords:

Crustal structure, Deccan Volcanic Province, Western Dharwar craton, Magnetotellurics, Resistivity

Abstract

The electrical properties of the boundary beneath the Deccan Volcanic Province and the western Dharwar craton are imaged by using the magnetotelluric method. The magnetotelluric study was carried out along a 150km long WNW-ESE profile from Belgaum (in the Deccan Volcanic Province) to Haveri (in the western Dharwar craton). Data from 19 magnetotelluric stations spaced 10-15km apart were used. The dominant regional geo-electric strike direction obtained is N20ºE. Two-dimensional (2-D) inversion is done by using the non-linear conjugate gradient scheme for both apparent resistivity and phase. The 2-D resistivity model shows a high electrical resistivity character (>10,000ohm·m) in the western Dharwar craton. Two conductive anomalies are mapped in the crustal region. In the WNW side of the profile, a conductive feature (~200ohm·m) is imaged in the mid-lower crust and, in the central part of the profile another conductive feature is mapped in the lower crust. The robustness of conductive features is tested using linear and non-linear sensitivity analyses. The conductor mapped in the WNW part of the profile is considered as a deep-seated fault representing a boundary or a rift related feature beneath the Deccan Volcanic Province and the western Dharwar craton. A zone of enhanced conductivity (<50ohm·m) at an approximate depth of 10-30km may represent the presence of the rift in the region. This conducting feature on the Western side of the E-W trending Kaladgi Basin can be interpreted as the extension of the Kaladgi Basin further west. A wellcorrelated geological cross-section is also derived to interpret the resistive features mapped in this study. The electrical resistivity nature of the crust is compared with other regions of the world.

References

Adetunji, A.Q., Ferguson, I.J., Jones, A.G., 2015. Imaging the mantle lithosphere of the Precambrian grenville: largescale electrical resistivity structures. Geophysical Journal International, 201, 1038-1059.

Bhaskar Rao, Y.J., Naqvi, S.M., 1978. Geochemistry of Metavolcanics from the Bababudan Schist Belt; A Late Archaean/Early Proterozoic Volcano-Sedimentary Pile from India. Developments in Precambrian Geology, 1, 325-341.

Bologna, M.S., Egbert, G.D., Padilha, A.L., Pádua, M.B., Vitorello, I., 2017. 3-D inversion of complex magnetotelluric data from an Archean-Proterozoic terrain in northeastern São Francisco Craton, Brazil. Geophysical Journal International, 210, 1545-1559. DOI: https://doi.org/10.1093/gji/ggx261

Borah, K., Rai, S.S., Prakasam, K.S., Gupta, S., Priestley, K., Gaur, V.K., 2014b. Seismic imaging of crust beneath the Dharwar craton, India, from ambient noise and teleseismic receiver function modelling. Geophysical Journal International, 197, 748-767.

Brasse, H., Kapinos, G., Li, Y., Mütschard, L., Eydam, D., 2009. Structural electrical anisotropy in the crust at the south-central Chilean continental margin as inferred from geomagnetic transfer functions. Physics of the Earth and Planetary Interiors, 173, 7-16. DOI: 10.1016/j.pepi.2008.10.017

Bruhn, D., Raab, S., Schilling, F., 2004. Electrical Resistivity of Dehydrating Serpentinite, Eos Trans. AGU, 85(47), Fall Meeting, Abstract T41B-1176.

Chadwick, B., Vasudev, V.N., Hegde, G.V., 1997. The Dharwar craton, southern India, and its Late Archean plate tectonic setting: current interpretations and controversies. Proceedings of the Indian Academy of Sciences (Earth Planetary Science), 106, 249-258.

Chave, A.D., Thomson, D.J., 2004. Bounded influence magnetotelluric response function estimation. Geophysical Journal International, 157, 988-1006.

Clark, C., Collins, A.S., Timms, N.E., Kinny, P.D., Chetty, T.R.K., Santosh, M., 2009. SHRIMP U-Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India. Gondwana Research, 16, 27-36.

Condie, K.C., 1981. Archean Greenstone Belts. Amsterdam, Elsevier, 434pp.

Constable, S.C., 2006. SEO3: an new model of olivine electrical conductivity, Geophysical Journal International, 166, 435-437.

Davis, W.J., Jones, A.G., Bleeker, W., Grutter, H., 2003. Lithosphere development in the Slave craton: a linked crustal and mantle perspective. Lithos, 71, 575-589.

De Wit, M.J., 1998. On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precambrian Research, 91, 181-226.

Davidson, A., 1998. Questions of correlation across the Grenville Front east of Sudbury, Ontario. Current Research 1998-C, Geological Survey of Canada, Paper 98-IC, 145-154.

Dey, S., 2015. Geological history of the Kaladgi–Badami and Bhima basins, south India: sedimentation in Proterozoic intracratonic set-up. In: Mazumder, R., Eriksson, P.G. (eds.). Precambrian basins of India: stratigraphic and tectonic context. London, The Geological Society, 43 (1, Memoirs), 283-296.

Dong, Z., Tang, J., Unsworth, M., Chen, X., 2015. Electrical resistivity structure of the upper mantle beneath Northeastern China: Implications for rheology and the mechanism of craton destruction. Journal of Asian Earth Sciences, 100, 115-131. DOI: https://doi.org/10.1016/j.jseaes.2015.01.008

Duba, A., Heikamp, S., Meurer, W., Nover, G., Will, G., 1994. Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity. London, Nature, 367, 59-61.

Ducea, M.N., Park, S.K., 2000. Enhanced mantle conductivity from sulfide minerals, southern Sierra Nevada, California. Geophysical Research Letters, 27, 2405-2408.

Duncan, P.M., Hwang, A., Edwards, R.N., Bailey, R., Garland, G.D., 1980. The development and applications of a wide band electromagnetic sounding system using a pseudo-noise source. Geophysics, 45, 1276-1296.

Easton, R.M., 1992. The Grenville Province and the Proterozoic history of Central and Southern Ontario. Geology of Ontario.

Ontario Geological Survey, 4 (Special volume), 713-904.

Evans, S., Jones, A.G., Spratt, J., Katsube, J., 2005. Central Baffin electromagnetic experiment (CBEX): Mapping the North American Central Plains (NACP) in the Canadian arctic. Physics of the Earth and Planetary Interiors, 150, 107-122.

Ferguson, I.J., Jones, A.G., Chave, A.D., 2012. Case histories and geological applications. In book The Magnetotelluric Method: Theory and Practice, Cambridge University Press, 480-544.

Fourel, L., Milelli, L., Jaupart, C., Limare, A., 2013. Generation of continental rifts, basins, and swells by lithosphere instabilities. Journal of Geophysical Research: Solid Earth, 118, 3080-3100. DOI: http://dx.doi.org/10.1002/jgrb.50218

Glover, P.W.J., Vine, F.J., 1992. Electrical conductivity of carbon bearing granulite at raised temperatures and pressures. Nature, 3609, 723-726.

Gokarn, S.G., Rao, C.K., Singh, B.P., Nayak, P.N., 1992. Magnetotelluric studies across the Kurduwadi gravity feature. Physics of the Earth and Planetary Interiors, 72(1-2), 58-67. DOI: https://doi.org/10.1016/0031-9201(92)90049-2

Gokarn, S.G., Gupta, G., Rao, C.K., 2004. Geoelectric structure of the Dharwar craton from magnetotelluric studies: Archean

suture identified along the Chitradurga-Gadag schist belt. Geophysical Journal International, 158, 712-728. DOI: 10.1111/j.1365-246X.2004.02279. x

Groom, R.W., Bailey, R.C., 1989. Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion. Journal of Geophysical Research, 94, 1913-1925.

Gupta, M.L., Sharma, S.R., Sundar, A., 1991. Heat flow and heat generation in the Archaean Dharwar cratons and implications for the Southern Indian shield geotherm and lithospheric thickness. Tectonophysics, 194, 107-122. DOI: 10.1016/0040-1951 91 90275-W

Haak, V, Hutton, R., 1986. Electrical resistivity in continental lower crust. London, The Geological Society, 24 (1, Special Publications), 35-49.

Hasnian. I., Qureshy, M.N., 1971. Palaeomagnetism and Geochemistry of some dykes, Mysore state, India. Journal of Geophysical Research, 76, 4786-4795.

Hegde, V.S., Chavadi, V.C., 2009. Geochemistry of late Archaean meta greywackes from the Western Dharwar Craton, South India: Implications for provenance and nature of the Late Archaean crust. Gondwana Research, 15, 178-187.

Hermance, J.F., 1979. The electrical conductivity of materials containing partial melts: a simple model from Archies law. Geophysical Research Letters, 6, 613-616.

Hirth, G., Evans, R.L., Chave, A.D., 2000. Comparison of continental and oceanic mantle electrical conductivity: is the Archean lithosphere dry? Geochemistry Geophysics Geosystems., 1, 1030. DOI: 10.1029/2000GC000048

Hyndman, R.D., Shearer, P.M., 1989. Water in the lower continental crust: modelling magnetotelluric and seismic reflection results. Geophysical Journal International, 98, 343-365.

Jayananda, M., Kano, T., Peucat, J.-J., Channabasappa, S., 2008. 3.35 Ga komatiite volcanism in the western Dharwar craton, southern India: Constraints from Nd isotopes and whole-rock geochemistry. Precambrian Research, 162, 160-179. DOI: http:// dx.doi.org/10.1016/j.precamres.2007.07.010

Jayananda, M., Tsutsumi, Y., Miyazaki, T., Gireesh, R.V., Kapfo, K., Tushipokla, Hidaka, H., Kano, T., 2013. Geochronological constraints on Meso-neoarchean regional metamorphism and magmatism in the Dharwar craton, southern India. Journal of Asian Earth Sciences, 78, 18-38. DOI: http://dx.doi.org/10.1016/j.jseaes. 2013.04.033

Jayananda, M., Santosh, M., Aadhiseshan, K.R., 2018. Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, southern India. Earth-Science Reviews, 181, 12-42. DOI: https://doi.org/10.1016/j.earscirev.2018.03.013

Jayaprakash, A.V., 2007. Puarana Basins of Karnataka. Kolkata, Geological Survey of India, Memoirs, 129, 136pp.

Jiracek, G.R., Ander, M.E., Holcombe, H.T., 1979. Magnetotelluric soundings of crustal conductive zones in major continental rifts. In: (eds.). Rio Grande Rift: Tectonics and Magmatism edited by Riecker, R. E., American Geophysical Union, Washington, DC, 209-222.

Jones, A.G., 1981. On a type classification of lower crustal layers under Precambrian regions. Journal of Geophysics, 49, 226-233.

Jones, A.G., 1988. Static shift of magnetotelluric data and its removal in a sedimentary basin environment. Geophysics, 53, 967-978. DOI: 10.1190/1.1442533

Jones, A.G., 1992. Electrical conductivity of the continental lower crust. In: Fountain, D.M., Arculus, R.J., Kay, R.W. (eds.). Continental Lower Crust. Amsterdam, Elsevier, 81-143.

Jones, A.G., 1993. The COPROD2 dataset: Tectonic setting, Recorded MT Data, and Comparison of models. Journal of Geomagnetism and Geoelectricity, 45(9), 933-955. DOI: 10.5636/jgg.45.933

Jones, A.G., 1999. Imaging the continental upper mantle using electromagnetic methods. Lithos, 48, 57-80.

Jones, A.G., Ledo, J., Ferguson, I.J., 2005. Electromagnetic images of the Trans-Hudson orogen: the North American Central Plains (NACP) anomaly revealed. Canadian Journal of Earth Sciences, 42, 457-478.

Julia, J., Jagadeesh, S., Rai, S.S., Owens, T.J., 2009. Deep crustal structure of the Indian Shield from joint inversion of P-wave receiver functions and Rayleigh-wave group velocities: implications for Precambrian evolution. Journal of Geophysical Research, 11, 4. DOI: http://dx.doi.org/10.1029/2008JB006261

Kaila, K.L., Roy Chowdhury, K., Reddy, P.R., Krishna, V.G., Narain, H., Subbotin, S.I., Sollogub, V.B., Chekunov, A.V., Kharetchko, G.E., Lazarenko, M.A., Ilchenko, T.V., 1979. Crustal structure along Kavali-Udipi profile in the Indian peninsular shield from Deep Seismic Sounding. Journal of Geological Society of India, 20, 307-333.

Karato, S., 1990. The role of hydrogen in the electrical conductivity of the upper mantle. Nature, 347, 272-273.

Kariya, K.A., Shankland, T.J., 1983. Electrical conductivity of dry lower crustal rocks. Geophysics, 48, 52-61.

Keller, G.V., 1989b. Electrical structure of the crust and upper mantle beneath the United States: Part 2, Survey of data and interpretation. In: Pakiser, L., Mooney, W.D. (eds.). Geophysical Framework of the Continental United States. Memoir of the Geological Society of America, 172, 425-446.

Khoza, D., Jones, A.G., Muller, M.R., Evans, R.L., Webb, S.J., Miensopust, M., the SAMTEX team, 2013. Tectonic model of the Limpopo belt: Constraints from magnetotelluric data. Precambrian Research, 226, 143-156.

Klein, G.D., 1995. Intracratonic basins. In: Busby, C.J., Ingersoll, R.V. (eds.). Tectonics of Sedimentary Basins. Malden (MA), Blackwell Science, 459-478.

Korja, T., Hjelt, S-E., 1993. Electromagnetic studies in the Fennoscandian Shield-electrical conductivity of Precambrian crust. Physics of the Earth and Planetary Interiors, 81(1), 107-138.

Korja, T., 2007. How is the European lithosphere imaged by magnetotellurics? Surveys in Geophysics, 28, 239-272.

Kumar, A., Bhaskar Rao, Y.J., Sivaraman, T.V., Gopalan, K., 1996. Sm-Nd ages of Archaean metavolcanics of the Dharwar craton, South India. Precambrian Research, 80, 205-216.

Kumar, N., Zeyen, H., Singh, A.P., Singh, B., 2013. Lithospheric structure of Southern Indian shield and adjoining oceans: integrated modelling of topography, gravity, geoid and heat flow data. Geophysical Journal International, 194, 30-44.

Kusham, Pratap, A., Pradeep Naick, B., Naganjaneyulu, K., 2018. Lithospheric architecture in the Archaean Dharwar craton, India: a magnetotelluric model. Journal of Asian Earth Sciences, 163, 43-53.

Kusham, Pratap, A., Pradeep Naick, B., Naganjaneyulu, K., 2019. Crustal and Lithospheric mantle conductivity structure in the Dharwar craton, India. Journal of Asian Earth Sciences, 176, 253-263.

Kusham, Pradeep Naick, B., Pratap, A., Naganjaneyulu, K., 2021a. Magnetotelluric 3-D full tensor inversion in the Dharwar craton, India: Mapping of subduction polarity and kimberlitic melt. Physics of the Earth and Planetary Interiors, 315, 106708. DOI: https://doi.org/10.1016/j.pepi.2021.106708

Kusham, Pradeep Naick, B., Pratap, A., Naganjaneyulu, K., 2021b. 2-D versus 3-D Magnetotelluric Data Interpretation: A case study from the Dharwar craton, India. Tectonophysics, 816, 229028. DOI: https://doi.org/10.1016/j.tecto.2021.229028

Krishna Brahmam, N., Negi, J.G., 1973. Rift valleys beneath Deccan Traps (India). Geophysical Research Bulletin, 11, 207-237.

Krishnamurthy, P., 2020. The Deccan Volcanic Province (DVP), India: A Review. Journal of the Geological Society of India, 96, 9-35. DOI: https://doi.org/10.1007/s12594-020-1501-5

McNeice, G.W., Jones, A.G., 2001. Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics, 66, 158-173.

Miall, A.D. 1984. Principles of Sedimentary Basin Analysis. New York, Springer, 490pp.

Mibe, K., Fujii, T., Yasuda, A., 1998. Connectivity of aqueous fluid in the Earth’s upper mantle. Geophysical Research Letters, 25, 1233-1236.

Miensopust, M., Jones, A.G., Muller, M.R., Garcia, X., Evans, R.L., 2011. Lithospheric structures and Precambrian terrane boundaries in northeastern Botswana revealed through magnetotelluric profiling as part of the Southern African Magnetotelluric Experiment. Journal of Geophysical Research: Solid Earth, 116, B02401.

Muller, M.R., Jones, A.G., Evans, R.L., Grutter, H.S., Hatton, C., Garcia, X., Hamilton, M.P., Miensopust, M.P., Cole, P., Ngwisanyi, T., Hutchins, D., Fourie, C.J., Jelsma, H.A., Evans, S.F., Aravanis, T., Pettit, W., Webb, S.J., Wasborg, J., The SAMTEX Team, 2009. Lithospheric structure, evolution and diamond prospectivity of the Rehoboth Terrane and thewestern Kaapvaal Craton, southern Africa: constraints from broadband magnetotellurics. Lithos, 112S, 93-105.

Naganjaneyulu, K., 2010. Granitic and magmatic bodies in the deep crust of the Son Narmada Region, Central India: constraints from seismic, gravity and magnetotelluric methods. Earth Planets Space, 62, 863-868.

Naganjaneyulu, K., Harinarayana, T., 2004. Deep crustal electrical signatures of eastern Dharwar craton, India. Gondwana Research, 7, 951-960.

Naganjaneyulu, K., Santosh, M., 2010a. The Cambrian collisional suture of Gondwana in southern India: A geophysical appraisal. Journal of Geodynamics, 50, 256-267. DOI: 10.1016/j.jog.2009.12.001

Naganjaneyulu, K., Santosh, M., 2010b. The Central India Tectonic Zone: a geophysical perspective on continental amalgamation along a Mesoproterozoic suture. Gondwana Research, 18, 547-564. DOI: 10.1016/j.gr.2010.02.017

Naganjaneyulu, K., Santosh, M., 2011. Crustal architecture beneath Madurai Block, southern India deduced from magnetotelluric studies: implications for subduction–accretion tectonics associated with Gondwana assembly. Journal of Asian Earth Sciences, 40, 132-143.

Naganjaneyulu, K., Santosh, M., 2012. The nature and thickness of lithosphere beneath the Archean Dharwar Craton, southern India: A magnetotelluric model. Journal of Asian Earth Sciences, 49, 349-361. DOI: 10.1016/j.jseaes.2011.07.002

Nagarjuna, D., Rao, C.K., Kumar, A., 2017. Geoelectric structure of northern Cambay rift basin from magnetotelluric data. Earth, Planets and Space, 69, 140. DOI: https://doi.org/10.1186/s40623-017-0725-0

Naqvi, S.M., Rogers, J.J.W., 1987. Precambrian Geology of India. Oxford, Oxford University Press, 223pp.

Negi, J.G., Pandey, O.P., Agrawal, P.K., 1986. Super-mobility of hot Indian lithosphere. Tectonophysics, 131, 147-156.

Newton, R.C., 1990. Fluids and melting in the Archean deep crust of S. India. In: Ashworth, J.R., Brown, M. (eds.). High Temperature Metamorphism and Crustal Anatexis. London, Unwin Hyman, 160-179.

Pape, F.L., Jones, A.G., Jessell, M.W., Perrouty, S., Gallardo, L.A., Baratoux, L., Hogg, C., Siebenaller, L., Touré, A., Ouiya, P., Boren, G., 2017. Crustal structure of southern Burkina Faso inferred from magnetotelluric, gravity and magnetic data. Precambrian Research, 300, 261-272. DOI: https://doi.org/10.1016/j.precamres.2017.08.013

Peucat, J.J., Bouhallier, H., Fanning, C.M., Jayananda, M., 1995. Age of the Holenarsipur Greenstone Belt, Relationships with the Surrounding Gneisses (Karnataka, south India). The Journal of Geology, 103, 701-710.

Pina-Varas, P., Ledo, J., Queralt, P., Marcuello, A., Bellmunt, F., Hidalgo, R., Messeiller, M., 2014. 3-D Magnetotelluric exploration of Tenerife Geothermal System (Canary Islands, Spain). Surveys in Geophysics, 35, 1045-1064. DOI: 10.1007/s10712-014-9280-4

Pratap, A., Kusham, Pradeep Naick, B., Naganjaneyulu, K., 2018. A magnetotelluric study from over Dharwar cratonic nucleus into Billigiri Rangan charnockitic massif, India. Physics of the Earth and Planetary Interiors, 280, 32-39.

Raase, P., Raith, M., Ackermand, D., Lal, R.K., 1986. Progressive Metamorphism of Mafic Rocks from Greenschist to Granulite Facies in the Dharwar Craton of South India. The Journal of Geology, 94, 261-282.

Radhakrishna, B.P., Naqvi, S.M., 1986. Precambrian continental crusts of India and its evolution. The Journal of Geology, 94, 145-166.

Rai, S.S., Priestly, K., Suryaprakasam, K., Srinagesh, D., Gaur, V.K., Du, Z., 2003. Crustal shear velocity structure of the South India shield. Journal of Geophysical Research, 108, B2, 2088. DOI: 10.1029/2002JB001776

Rajaram, M., Anand, S.P., 2003. Crustal Structure of South India From Aeromagnetic Data. Journal of the Virtual Explorer, 12, 72-82.

Ramakrishna, T.S., Chayanulu, A.Y.S.R., 1988. A geophysical appraisal of the Purana basins of India. Journal of the Geological Society of India, 32, 48-60.

Ramakrishnan, M., Vaidyanadhan, R., 2010. Geology of India. Bangalore, Geological Society of India, 1, 556pp.

Rao, C.K, Singh, B.P., 1995. Upper Crustal Structure in the TomiPurnad Region, Central India, Using Magnetotelluric Studies. Journal of geomagnetism and geoelectricity, 47(4), 411-420.

Rao, C.K., Selvaraj, C., Gokarn, S.G., 2014. Deep electrical structure over the igneous arc of the Indo Burman Orogen in Sagaing province, Myanmar from magnetotelluric studies. Journal of Asian Earth Sciences, 94, 68-76. DOI: https://doi.org/10.1016/j.jseaes.2014.08.016

Ravi Kumar, M., Saul, J., Sarkar, D., Kind, R., Anshu, K., Shukla, A.K., 2001. Crustal structure of the India Shield: New constraints from teleseismic receiver functions. Geophysical Research Letters 28, 1339-1342.

Rodi, W., Mackie, R.L., 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66, 174-187.

Rodi, W., Mackie, R.L., 2012. The inverse problem. In: Chave, A.D., Jones, A.G. (eds.). The Magnetotelluric Method: Theory and Practice. New York, Cambridge University Press, 347-414.

Roy, S., Rao, R.U.M., 2000. Heat flow in the Indian shield. Journal of Geophysical Research, 105(B11), 25,587-25,604. DOI: 10.1029/2000JB900257

Roy, S., Ray, L., Bhattacharya, A., Srinivasan, R., 2008. Heat flow and crustal thermal structure in the Late Archaean Closepet Granite batholith, south India. International Journal of Earth Sciences, Geologische Rundschau 97, 245-256. DOI: 10.1007/s00531-007-0239-2

Saikia, U., Das, R., Rai, S.S., 2017. Possible magmatic underplating beneath the west coast of India and adjoining Dharwar craton: imprint from Archean crustal evolution to breakup of India and Madagascar. Earth and Planetary Science Letters, 462, 1-17.

Sarafian, E., Evans, R.L., Abdelsalam, M.G., Atekwana, E., Elsenbeck, J., Jones, A.G., Chikambwe, E., 2018. Imaging Precambrian lithospheric structure in Zambia using electromagnetic methods. Gondwana Research, 54, 38-49. DOI: 10.1016/j.gr.2017.09.007

Sarkar, D., Chandrakala, K., Padmavathi Devi, P., Sridhar, A.R., Sain, K., Reddy, P.R., 2001. Crustal velocity structure of western Dharwar craton, south India. Journal of Geodynamics, 31, 227-241.

Schilling, F.R., Partzsch, G.M., Brasse, H., Schwarz, G., 1997. Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data. Physics of the Earth and Planetary Interiors 103, 17-31.

Schwarz, G., 1990. Electrical conductivity of the Earth’s crust and upper mantle. Surveys in Geophysics, 11, 133-161.

Selway, K., Hand, M., Payne, J.L., Heinson, G.S., Reid, A., 2011. Magnetotelluric constraints on the tectonic setting of Grenville-aged orogenesis in central Australia. Journal of the Geological Society, 168(1), 251-264. DOI: 10.1144/0016-

-034

Selway, K., 2014. On the causes of electrical conductivity anomalies in tectonically stable lithosphere. Surveys in Geophysics, 35, 219-257.

Srinivasan, R., Naha, K., 1993. Archaean sedimentation in the Dharwar craton, southern India. Proceedings of the National

Academy of Sciences, India, 63(A), 1-13.

Subrahmanyam, C., Verma, R.K., 1982. Gravity interpretation of the Dharwar greenstonegneiss-granite terrain in the southern Indian shield and its geological implications. Tectonophysics, 84, 225-245.

Swami Nath, J., Ramakrishnan, M., 1981. Early Precambrian Supracrustals of Southern Karnataka. Geological Survey of India, 112 (Memoir), 351pp.

Taylor, P.N., Chadwick, B., Moorbath, S., Ramakrishnan, M., Viswanatha, M.N., 1984. Petrography, chemistry and isotopic ages of Peninsular Gneiss, Dharwar acid volcanic rocks and the Chitradurga granite with special reference to the late Archaean evolution of the Karnataka craton. Precambrian Research, 23, 349-375.

Wannamaker, P.E. 1997. Comment on “The petrologic case for a dry lower crust” by B.W.D. Yardley and J.W. Valley. Journal of

Geophysical Research, 102, 12173-12185.

White, R., McKenzie, D., 1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 94, 7685-7729.

Wu, X., Ferguson, I. J., Jones, A.G., 2002. Magnetotelluric response and geoelectric structure of the Great Slave Lake shear zone. Earth and Planetary Science Letters, 196, 35-50.

Yardley, B.W.D., Valley, J.W., 1997. The petrologic case for a dry lower crust. Journal of Geophysics Research, 102, 12172-12185.

Yellappa, T., Santosh, M., Chetty, T.R.K., Kwon, S., Park, C., Nagesh, P., Mohanty, D.P., Venkatasivappa, V., 2012. A Neoarchean dismembered ophiolite complex from southern India: geochemical and geochronological constraints on its suprasubduction origin. Gondwana Research, 21, 246-265.

Yoshino, T., Manthilake, G., Matsuzaki, T., Katsura, T., 2008. Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature, 451, 326-329.

Downloads

Published

2023-03-23

Issue

Section

Articles