Devonian-Mississippian faulting controlled by WNW-ESE-striking structural grain in Proterozoic basement rocks in Billefjorden, central Spitsbergen

Authors

  • Jean-Baptiste P. Koehl Centre for Earth Evolution and Dynamics
  • Gard Christophersen
  • Maxime Collombin
  • Christoffer Taule
  • Eirik M.B. Stokmo
  • Lis Allaart

DOI:

https://doi.org/10.1344/GeologicaActa2023.21.7

Keywords:

Faults, Svalbard, Devonian-Mississippian, Timanian

Abstract

In Billefjorden, central Spitsbergen, Devonian collapse and Carboniferous rift-related sedimentary strata were deposited unconformably over Proterozoic basement rocks displaying well developed N-S-trending Caledonian grain. Caledonian structures and fabrics are thought to have controlled the location and trend of subsequent Devonian and Carboniferous basin-bounding faults like the Billefjorden fault zone and Lemströmfjellet–Løvehovden fault. However, fieldwork and interpretation of aerial photographs in Proterozoic basement rocks reveal the existence of steep, abundant, WNW-ESE-striking brittle faults that are sub-orthogonal to known major Caledonian and post-Caledonian structures in Billefjorden, but that do not extend into adjacent-overlying, rift-related, Pennsylvanian rocks of the Gipsdalen Group. Structural analysis of field data and aerial photographs suggest that WNW-ESE-striking faults in basement rocks in Billefjorden formed as (sinistral) strike-slip and normal faults during Devonian-Mississippian extension in agreement with previously inferred models of sinistral transtension. The abundance of these faults suggest that their formation was controlled by analogously trending, preexisting structural grain (planar anisotropies) at depth, and their pronounced WNW-ESE strike suggest that the strike of preexisting anisotropies were comparable to recently identified, crustal-scale, WNW-ESE-striking Timanian thrust systems in Svalbard and the northern Barents Sea.

Author Biography

Jean-Baptiste P. Koehl, Centre for Earth Evolution and Dynamics

Postdoctoral fellow

Centre for Earth Evolution and Dynamics

University of Oslo

References

Aakvik, R., 1981. Fasies analyse av Undre Karbonske kullførende sedimenter, Billefjorden, Spitsbergen. PhD. Thesis. Bergen (Norway), University of Bergen, 219pp.

Ahlborn, M., Stemmerik, L., 2015. Depositional evolution of the Upper Carboniferous – Lower Permian Wordiekammen carbonate platform, Nordfjorden High, central Spitsbergen, Arctic Norway. Norwegian Journal of Geology, 95(1), 91–126.

Allaart, L., Friis, N., Ingólfsson, Ó., Håkansson, L., Noormets, R., Farnsworth, W.R., Mertes, J., Schomacher, A., 2018. Drumlins in the Nordenskiöldbreen forefield, Svalbard. Geologiska Föreningens i Stockholm Förhandlingar (GFF), 140, 170–188.

Balashov, Yu.A., Larionov, A.N., Gannibal, L.F., Sirotkin, A.N., Tebenkov, A.M., Ryüngenen, G.I., Ohta, Y., 1993. An Early Proterozoic U–Pb zircon age from an Eskolabreen Formation gneiss in southern Ny Friesland, Spitsbergen. Polar Research,

(2), 147–152.

Biddle, K.T., Christie-Blick, N., 1985. Glossary–Strike-slip deformation, basin formation, and sedimentation. In: Biddle, K.T., Christie-Blick, N. (eds.). Strike-Slip Deformation, Basin Formation, and Sedimentation. Society of Economic Mineralogists, 37 (Special Publication), 375–386.

Braathen, A., Bælum, K., Maher Jr., H.D., Buckley, S.J., 2011. Growth of extensional faults and folds during deposition of an evaporite-dominated half-graben basin; the Carboniferous Billefjorden Trough, Svalbard. Norsk Geologisk Tidsskrift, 91, 137–160.

Braathen, A., Osmundsen, P.T., Maher Jr., H.D., Ganerød, M., 2018. The Keisarhjelmen detachment records Silurian–Devonian extensional collapse in Northern Svalbard. Terra Nova, 30, 34–39.

Braathen, A., Ganerød, M., Maher Jr., H., Myhre, P.I., Osmundsen, P.T., Redfield, T., Serck, C., 2020. Devonian extensional tectonicsin Svalbard; Raudfjorden’s synclinal basin above the Keisarhjelmen detachment. Oslo (Norway), January 8th–10th

, 34th Nordic Geological Winter Meeting, 34-35.

Chorowicz, J., 1992. Gravity-induced detachment of Devonian basin sediments in northern Svalbard. Norsk Geologisk Tidsskrift, 72, 21–25.

Christophersen, G., 2015. Fracturing and Weathering in Basement of the Billefjorden Trough, an Analogue to Top Basement Reservoirs. Master’s Thesis. Oslo (Norway), University of Oslo, 137pp.

Cutbill, J.L., Challinor, A., 1965. Revision of the Stratigraphical Scheme for the Carboniferous and Permian of Spitsbergen and Bjørnøya. Geological Magazine, 102, 418–439.

Cutbill, J.L., Henderson, W.G., Wright, N.J.R., 1976. The Billefjorden Group (Early Carboniferous) of central Spitsbergen. Norsk Polarinstitutt Skrifter, 164, 57–89.

Dallmann, W.K., 2015. Geoscience Atlas of Svalbard. Tromsø (Norway), Norsk Polarinstitutt, Rapportserie, 148, 292pp.

Dallmann, W.K., Piepjohn, K., 2018. Comment on “The Keisarhjelmen detachment records Silurian–Devonian extensional collapse in Northern Svalbard”. Terra Nova, 30, 319–321.

Dallmann, W.K., Piepjohn, K., 2020. The structure of the Old Red Sandstone and the Svalbardian Orogenic Event (Ellesmerian Orogeny) in Svalbard. Norges Geologisk Undersøkelse Bulletin, 15 (Special Publication), 106pp.

Dallmann, W.K., Andresen, A., Bergh, S.G., Maher Jr., H.D., Ohta, Y., 1993. Tertiary fold-and-thrust belt of Spitsbergen Svalbard. Norsk Polarinstitutt Meddelelser, 128, 51pp.

Faehnrich, K., Majka, J., Schneider, D., Mazur, S., Manecki, M., Ziemniak, G., Wala, V.T., Strauss, J.V., 2020. Geochronological constraints on Caledonian strike-slip displacement in Svalbard, with implications for the evolution of the Arctic. Terra Nova, 32, 290–299.

Fazlikhani, H., Fossen, H., Gawthorpe, R.L., Faleide, J.I., Bell, R.E., 2017. Basement structure and its influence on the structural configuration of the northern North Sea rift. Tectonics, 36(1), 1151–1177.

Friend, P.F., Moody-Stuart, M., 1972. Sedimentation of the Wood Bay Formation (Devonian) of Spitsbergen: Regional analysis of a late orogenic basin. Norsk Polarinstitutt Skrifter, 157, 80pp.

Friend, P.F., Heintz, N., Moody-Stuart, M., 1966. New unit terms for the Devonian of Spitsbergen and a new stratigraphical scheme for the Wood Bay Formation. Polarinstitutt Årbok, 1965, 59–64.

Friend, P.F., Harland, W.B., Rogers, D.A., Snape, I., Thornley, R.S., 1997. Late Silurian and Early Devonian stratigraphy and probable strike-slip tectonics in northwestern Spitsbergen. Geological Magazine, 134(4), 459–479.

Gayer, R.A., Gee, D.G., Harland, W.B., Miller, J.A., Spall, H.R., Wallis, R.H., Winsnes, T.S., 1966. Radiometric age determinations on rocks from Spitsbergen. Norsk Polarinstitutt Skrifter, 137, 43pp.

Gee, D.G., 1972. Late Caledonian (Haakonian) movements in northern Spitsbergen. Norsk Polarinstitutt Årbok, 1970, 92–101.

Gee, D.G., Moody-Stuart, M., 1966. The base of the Old Red Sandstone in central north Haakon VII Land, Vestspitsbergen. Norsk Polarinstitutt Årbok, 1964, 57–68.

Gee, D.G., Page, L.M., 1994. Caledonian terrane assembly on Svalbard: New evidence from 40Ar/39Ar dating in Ny Friesland. American Journal of Science, 294, 1166–1186.

Gee, D.G., Harland, W.B., McWhae, J.R.H., 1952. Geology of Central Vestspitsbergen: Part I. Review of the geology of Spitsbergen, with special reference to Central Vestspitsbergen; Part II. Carboniferous to Lower Permian of Billefjorden. Transactions of the Royal Society of Edinburgh, 62, 299–356.

Gee, D.G., Schouenborg, B., Peucat, J.-J., Abakoumov, S.A., Krasil’scikov, A.A., Tebenkov, A., 1992. New evidence of basement in the Svalbard Caledonides: Early Proterozoic zircon ages from Ny Friesland granites. Norwegian Journal of Geology, 72, 181–190.

Gee, D.G., Björklund, L., Stølen, L.-K., 1994. Early Proterozoic basement in Ny Friesland–implications for the Caledonian tectonics of Svalbard. Tectonophysics, 231, 171–182.

Gjelberg, J.G., 1983. Lower – Mid Carboniferous strata Spitsbergen. Ph.D. Thesis. Bergen (Norway), University of Bergen, Part III, 185pp.

Gjelberg, J.G., 1984. Early–Middle Carboniferous sedimentation on Svalbard. A study of ancient alluvial and coastal marine sedimentation in rift- and strike-slip basins. Ph.D. Thesis. Bergen (Norway), University of Bergen, 306pp.

Gjelberg, J.G., Steel, R.J., 1981. An outline of Lower–Middle Carboniferous sedimentation on Svalbard: Effects of tectonic, climatic and sea level changes in rift basin sequences. In: Kerr, J.W., Ferguson, A.J. (eds.). Geology of the North Atlantic Borderlands. Canadian Society of Petroleum Geology Memoir, 7, 543–561.

Harland, W.B., 1969. Contribution of Spitsbergen to understanding of tectonic evolution of North Atlantic region. American Association of Petroleum Geologists (AAPG), 12 (Memoirs), 817–851.

Harland, W.B., Horsfield, W.T., 1974. West Spitsbergen Orogen. In: Spencer, A.M. (ed.). Mesozoic–Cenozoic orogenic belts. London, The Geological Society, 4 (Special Publications), 747–755.

Harland, W.B., Wallis, R.H., Gayer, R.A., 1966. A Revision of the Lower Hecla Hoek succession in Central North Spitsbergen and correlation elsewhere. Geological Magazine, 103(1), 70–97.

Harland, W.B., Cutbill, L.J., Friend, P.F., Gobbett, D.J., Holliday, D.W., Maton, P.I., Parker, J.R., Wallis, R.H., 1974. The Billefjorden Fault Zone, Spitsbergen – the long history of a major tectonic lineament. Norsk Polarinstitutt Skrifter, 161, 1–72.

Harland, W.B., Scott, R.A., Auckland, K.A., Snape, I., 1992. The Ny Friesland Orogen, Spitsbergen. Geological Magazine, 129(6), 679–708.

Holliday, D.W., Cutbill, J.L., 1972. The Ebbadalen Formation (Carboniferous), Spitsbergen. Proceedings of the Yorkshire Geological Society, 39(1), 1–32.

Jakobsson, M., Mayer, L., Coackley, B., Dowdeswell, J.A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H.W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R.M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J.V., Hall, J.K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S.V., Pedrosa, M.T., Travaglini, P.G., Weatherall, P., 2012. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophysical Research Letters, 39, L12609.

Johannessen, E., 1980. Facies analysis of the Ebbadalen Formation, Middle Carboniferous, Billefjorden Trough, Spitsbergen. Master’s Thesis. Bergen (Norway), University of Bergen, unpublished, 314pp.

Johannessen, E.P., Steel, R.J., 1992. Mid-Carboniferous extension and rift-infill sequences in the Billefjorden Trough, Svalbard. Norsk Geologisk Tidsskrift, 72, 35–48.

Keilen, H.B., 1992. Lower Permian sedimentary sequences in Central Spitsbergen, Svalbard. In: Nakamura, K. (ed.). Investigations on the Upper Carbonierous – Upper Permian Succession of West Spitsbergen 1989–1991. Sapporo (Japan),

Hokkaido University, Japanese–Norwegian Research Group, 127–134.

Klitzke, P., Franke, D., Ehrhardt, A., Lutz, R., Reinhardt, L., Heyde, I., Faleide, J.I., 2019. The Palaeozoic Evolution of the Olga Basin Region, Northern Barents Sea: A Link to the Timanian Orogeny. Geochemistry, Geophysics, Geosystems, 20, 614–629.

Koehl, J.-B.P., 2019. Impact of Timanian thrusts on the Phanerozoic tectonic history of Svalbard. UiT The Arctic University of Norway in Tromsø, Tromsø (Norway), September 13th 2019, Friday Seminar. DOI: dx.doi.org/10.13140/RG.2.2.12470.04161

Koehl, J.-B.P., 2020. Impact of Timanian thrusts on the Phanerozoic tectonic history of Svalbard. Vienna (Austria), May 3rd–8th 2020, European Geoscience Union (EGU) General Assembly, Keynote lecture. DOI: doi.org/10.5194/egusphere-egu2020-2170

Koehl, J.-B.P., 2021. Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard. Solid Earth,

, 1025–1049.

Koehl, J.-B.P., Muñoz–Barrera, J.M., 2018. From widespread Mississippian to localized Pennsylvanian extension in central Spitsbergen, Svalbard. Solid Earth, 9, 1535–1558.

Koehl, J.-B.P., Stokmo, E.M.B., 2021. Field photographs Billefjorden July 2021, DataverseNO. DOI: doi.org/10.18710/BIJYVO

Koehl, J.-B.P., Bergh, S.G., Henningsen, T., Faleide, J.I., 2018. Middle to Late Devonian–Carboniferous collapse basins on the Finnmark Platform and in the southwesternmost Nordkapp basin, SW Barents Sea. Solid Earth, 9, 341–372.

Koehl, J.-B.P., Bergh, S.G., Osmundsen, P.T., Redfield, T.F., Indrevær, K., Lea, H., Bergø, E., 2019. Late Devonian–Carboniferous faulting and controlling structures and fabrics in NW Finnmark. Norwegian Journal of Geology, 99(3), 1–39.

Koehl, J.-B.P., Magee, C., Anell, I.M., 2022a. Impact of Timanian thrust systems on the late Neoproterozoic–Phanerozoic tectonic evolution of the Barents Sea and Svalbard. Solid Earth, 13, 85–115.

Koehl, J.-B.P., Marshall, J.E.A., Lopes, G., 2022b. The timing of the Svalbardian Orogeny in Svalbard: a review. Solid Earth, 13, 1353–1370.

Koehl, J.-B.P., Allaart, L., Noormets, R., inpress. Devonian–Carboniferous extension and Eurekan inversion along a major WNW–ESE-striking fault system controlled by inherited basement fabrics in Billefjorden. Open Research Europe.

Lindemann, F.-J., Volohonsky, E., Marshall, J.E., 2013. A bonebed in the Hørbybreen Formation (Fammenian-Viséan) on Spitsbergen. Oslo (Norway), 8–10th January 2013, Winter Meeting, Norsk Geologisk Forening Abstracts and Proceedings, 1, 81-82.

Lund, K., 2008. Geometry of the Neoproterozoic and Paleozoic rift margin of western Laurentia: Implications for mineral deposit settings. Geosphere, 4(2), 429–444.

Lønøy, A., 1995. A Mid-Carboniferous, carbonate-dominated platform, Central Spitsbergen. Norsk Geologisk Tidsskrift, 75, 48–63.

Maher Jr., H.D., Braathen, A., 2011. Løvehovden fault and Billefjorden rift basin segmentation and development, Spitsbergen, Norway. Geological Magazine, 148(1), 154–170.

Maher Jr., H.D., Craddock, C., Maher, K., 1986. Kinematics of Tertiary structures in upper Paleozoic and Mesozoic strata on Midterhuken, west Spitsbergen. Geological Society of America Bulletin, 97, 1411–1421.

Maher, H., Braathen, A., Ganerod, M., Osmundsen, P.T., Redfield, T., Myhre, P.I., Serck, C., Parcher, S., 2022. Core complex fault rocks of the Silurian to Devonian Keisarhjelmen detachment in NW Spitsbergen. In: Kuiper, Y.D., Murphy, J.B., Nance, R.D., Strachan, R.A., Thompson, M.D. (eds.). New Developments in the Appalachians-Caledonian–Variscan Orogen. Geological Society of America, 54 (Special Paper), 265–286.

Majka, J., Mazur, S., Manecki, M., Czerny, J., Holm, D.K., 2008. Late Neoproterozoic amphibolite-facies metamorphism of a pre-Caledonian basement block in southwest Wedel Jarlsberg Land, Spitsbergen: new evidence from U–Th–Pb dating of monazite. Geological Magazine, 145(6), 822–830.

Majka, J., Larionov, A.N., Gee, D.G. Czerny, J., Prsek, J., 2012. Neoproterozoic pegmatite from Skoddefjellet, Wedel Jarlsberg Land, Spitsbergen: Additional evidence for c. 640Ma tectonothermal event in the Caledonides of Svalbard. Polish Polar Research, 33(1), 1–17.

Manby, G.M., Lyberis, N., 1992. Tectonic evolution of the Devonian Basin of northern Spitsbergen. Norsk Geologisk Tidsskrift, 72, 7–19.

Manby, G.M., Lyberis, N., Chorowicz, J., Thiedig, F., 1994. PostCaledonian tectonics along the Billefjorden fault zone, Svalbard, and implications for the Arctic region. Geological Society of America Bulletin, 105, 201–216.

Manecki, M., Holm, D.K., Czerny, J., Lux, D.R., 1998. Thermochronological Evidence for Late Proterozoic (Vendian) Cooling in Southwest Wedel Jarlsberg Land, Spitsbergen. Geological Magazine, 135(1), 63–69.

Marshall, J., Lindemann, F.J., Finney, S., Berry, C., 2015. A Mid Fammenian (Late Devonian) spore assemblage from Svalbard

and its significance. Bergen (Norway), 17–18th September 2015, Commission Internationale Microflore Paléozoique (CIMP) Meeting, 25-26.

Mazur, S., Czerny, J., Majka, J., Manecki, M., Holm, D., Smyrak, A., Wypych, A., 2009. A strike-slip terrane boundary in Wedel Jarlsberg Land, Svalbard, and its bearing on correlations of SW Spitsbergen with the Pearya terrane and Timanide belt. London, Journal of the Geological Society, 166, 529–544.

McCann, A.J., 2000. Deformation of the Old Red Sandstone of NW Spitsbergen; links to the Ellesmerian and Caledonian orogenies. In: Friends, P.F., Williams, B.P.J. (eds.). New Perspectives on the Old Red Sandstone. London, The Geological Society, Special Publications, 180, 567–584.

McCann, A.J., Dallmann, W.K., 1996. Reactivation of the longlived Billefjorden Fault Zone in north central Spitsbergen, Svalbard. Geological Magazine, 133, 63–84.

McWhae, J.R.H., 1953. The Carboniferous Breccias of Billefjorden, Vestspitsbergen. Geological Magazine, 90(4), 287–298.

Molnar, N.E., Cruden, A.R., Betts, P.G., 2017. Interactions between propagating rotational rifts and linear rheaological heterogeneities: Insights from three-dimensional laboratory experiements. Tectonics, 36, 420–443.

Moreno-Martin, D., Diez Fernandez, R., de Vicente, G., Fernandez, C., Gomez Barreiro, J., 2022. Orogenic reworking and reactivation in Central Iberia: A record of Variscan, Permian, and Alpine tectonics. Tectonophysics, 843, 229601.

Murascov, L.G., Mokin, Ju.I., 1979. Stratigraphic subdivision of the Devonian deposits of Spitsbergen. Norsk Polarinstitutt Skrifter, 167, 249–261.

Newman, M.J., Burrow, C.J., den Blaauwen J.L., 2019. The Givetian vertebrate fauna from the Fiskekløfta Member (Mimerdalen Subgroup), Svalbard. Part I. Stratigraphic and faunal review. Part II. Acanthodii. Norwegian Journal of Geology, 99(1), 1–16. DOI: dx.doi.org/10.17850/njg99-1-01

Norwegian Polar Insitute, 2016. Geological map of Svalbard (1:250000). Norwegian Polar Institute, doi.org/10.21334/npolar.2016.616f7504. Last accessed: 25.07.2023. Web: svalbardkartet.npolar.no

Osagiede, E.E., Rotevatn, A., Gawthorpe, R.L., Kristensen, T.B., Jackson, C.A.-L., Marsh, N., 2020. Pre-existing intra-basement shear zones influence growth and geometry of non-collinear normal faults, western Utsira High–Heindal Terrace, North Sea. Journal of Structural Geology, 130, 103908.

Peacock, D.C.P., Knipe, R.J., Sanderson, D.J., 2000. Glossary of normal faults. Journal of Structural Geology, 22, 291–305.

Phillips, T., Jackson, C.A-L., Bell, R.E., Duffy, O.B., Fossen, H., 2016. Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway. Journal of Structural Geology, 91, 54–73.

Piepjohn, K., Brinkmann, L., Diβmann, B., Grewing, A., Michaelsen, B., Kerp, H., 1997. Geologische und strukturelle Entwicklung des Devon sim zentralen Dickson Land, Spitzbergen. Münstersche Forschung zur Geologie und Paläontologie, 82, 175–202.

Playford, G., 1962. Lower Carboniferous microfloras of Spitsbergen, Part 1. Paleontology, 5(3), 550–618.

Playford, G., 1963. Lower Carboniferous microfloras of Spitsbergen, Part 2. Paleontology, 5(4), 619–678.

Roy, J.-C. L. G., 2007. La géologie du fossé des Vieux Grès Rouges du Spitzberg (archipel du Svalbard, territoire de l’Arctique) – Synthèse stratigraphique, conséquences paléogéographiques, paléoenvironnementales et tectoniques synsédimentaires. Ph.D. Thesis. Paris (France), Pierre and Marie Curie University, Mémoires des sciences de la Terre de l’Université Pierre et Marie Curie, 2007-15, 242pp.

Roy, J.-C. L. G., 2009. La saga des vieux grès rouges du Spitzberg (archipel du Svalbard, Arctique): Une histoire géologique et naturelle. Charenton-le-pont: Auto-Edition Roy-Poulain, 290pp.

Scheibner, C., Hartkopf-Fröder, C., Blomeier, D., Forke, H., 2012. The Mississippian (Lower Carboniferous) in northeast Spitsbergen (Svalbard) and a re-evaluation of the Billefjorden Group. Zeitschift der Deutschen Gesellscheft für Geowissenschaften, 163(3), 293–308.

Schiffer, C., Doré, A.G., Foulger, G.R., Franke, D., Geoffroy, L., Gernigon, L., Holdsworth, B., Kusznir, N., Lundin, E., McCaffrey, K., Peace, A.L., Petersen, K.D., Phillips, T.B., Stephenson, R., Stoker, M.S, Welford, J.K., 2020. Structural inheritance in the North Atlantic. Earth-Science Reviews, 203, 102975.

Smyrak-Sikora, A.A., Johannessen, E.P., Olaussen, S., Sandal, G., Braathen, A., 2018. Sedimentary architecture during Carboniferous rift initiation – the arid Billefjorden Trough, Svalbard. London, Journal of the Geological Society, 176(2), 225–252.

Thomas, W.A., 2005. Tectonic inheritance at a continental margin. GSA Today, 16(2), 4–11.

Vogt, T., 1938. The stratigraphy and tectonics of the Old Red formations of Spitsbergen. Abstracts of the Proceedings of the

eological Society London, 1343, 88.

Wiest, J.D., Wrona, T., Bauck, M.S., Fossen, H., Gawthorpe, R.L., Osmundsen, P.T., Faleide, J.I., 2020. From Caledonian Collapse to North Sea Rift: The History of a Metamorphic Core Complex. Tectonics, 39, e2020TC006178. DOI: doi.org/10.1029/2020TC006178

Witt-Nilsson, P., Gee, D.G., Hellman, F.J., 1998. Tectonostratigraphy of the Caledonian Atomfjella Antiform of northern Ny Friesland, Svalbard. Norsk Geologisk Tidsskrift, 78, 67–80.

Ziemniak, G., Majka, J., Manecki, M., Walczak, K., Jeanneret, P., Mazur, S., Kosminska, K., 2020. Early Devonian sinistral strike-slip in the Caledonian basement of Oscar II Land advocates for escape tectonics as a major mechanism for Svalbard terranes assembly. Vienna (Austria), May 3rd–8th 2020, European Geoscience Union (EGU) General Assembly, Geophysical Research Abstracts, EGU General Assembly 2020. DOI: doi.org/10.5194/egusphere-egu2020-1044.

Ziemniak, G., Majka, J., Manecki, M., Walczak, K., Jeanneret, P., Mazur, S., Kosminska, K., 2022. Early Devonian sinistral shearing recorded by retrograde monazite(-Ce) in Oscar II Land, Svalbard. Mineralogia, 53, 82–108. DOI: doi.org/10.2478/mipo-2022-0007.

Downloads

Published

2023-07-28

Issue

Section

Articles