Insights on geochemical characteristics, microthermometry of hydrothermal fluids, and sulfur isotope systematics of the Daralu porphyry Cu deposit, SE Iran

Authors

  • Zahra Jalali Kahnouj
  • Majid H.Tangestani Shiraz University
  • Sina Asadi

DOI:

https://doi.org/10.1344/GeologicaActa2023.21.10

Keywords:

Porphyry copper deposit, Geochemical data, fluid inclusion, Sulfur isotopes, Daralu, Iran

Abstract

The Miocene Daralu Porphyry Copper Deposits (PCDs) is found associated with other porphyries such as Sarcheshmeh and Meiduk in the Kerman Cenozoic Magmatic Arc (KCMA), southern Iran. In this research, we provided whole-rock geochemical data, characteristics of hydrothermal fluid and sulfur isotope composition of the Daralu intrusive body, and discussed the nature, tectonic setting and fluid evolution of this deposit aiming to investigate its fertility.


The Daralu porphyry shows adakites affinity, that is, high Sr/Y and La/Yb ratios and positive Eu anomalies. The REEs patterns indicate a strong fractionation ([La/Yb]n= 28.73). High La/Sm and Dy/Yb ratios suggest enrichment of amphibole and garnet as residual phases in melt source, whereas partial melting of plagioclase increases Eu and Sr in the parent magma. The presence of garnet implies a pressure equivalent to the thickness of more than 40km of crust.


To elucidate the evolutionary history of fluids and the origin of the Daralu deposit, we focused on the origin and composition of the fluid through petrography, laser Raman, and microthermometry studies of fluid inclusions. The fluid inclusions have been divided into four types: vapor (type I), aqueous-vapor (type II), CO2-bearing (type III), and multiphase (type IV). The Raman shifts included 1284 and 1388 cm−1 for CO2 and 2750–3900 cm−1 for H2O. The events such as NaCl supersaturation, exhausting of CO2-rich components, high oxygen fugacity and temperature decreasing through mineralization stages were critical in controlling the fertility of the Daralu PCD.


The obtained δ34S data for sulfides yielded an average of +5.5‰. Based on the observed features, it was concluded
that Daralu porphyry shares formation conditions with other productive porphyries of the KMCA.

References

Afshooni, S.Z., Mirnejad, H., Esmaeily, D., Haroni, H.A., 2013. Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran. Ore Geology Reviews, 54, 214-232.

Aghazadeh, M., Hou, Z., Badrzadeh, Z., Zhou, L., 2015. Temporalspatial distribution and tectonic setting of porphyry copper

deposits in Iran: Constraints from zircon U−Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 70, 385-406.

DOI: http://dx.doi.org/10.1016/j.oregeorev.2015.03.003

Aguillón-Robles, A., Caimus, T., Bellon, H., Maury, R.C., Cotton, J., Bourgois, J., Michaud, F., 2001. Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: indicators of East Pacific Rise subduction below southern Baja California. Geology, 29, 531-534.

Ahmad, T., Posht Kuhi, M., 1993. Geochemisty and petrogenesis of Urumiah-Dokhtar volcanics around Nain and Rafsanjan

areas: a preliminary study. In: Ahmad, T., Posht Kuhi, M. (eds.). Geochemistry and petrogenesis of Urumiah–Dokhtar volcanic belt around Nain and Rafsanjan area; Miner Depositaa preliminary study: treatise on the geology of Iran. Iranian Ministry of Mines and Metals, 90pp.

Ahmadian, J., Haschke, M., McDonald, I., Regelous, M., Ghorbani, M.R., Emami, M., Murata, M., 2009. High magmatic flux during Alpine−Himalayan collision: Constraints from the Kale-Kafi complex, Central Iran. Geological Society of America Bulletin, 121, 857-868. DOI: http://dx.doi.org/10.1130/B26279.1

Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304, 1-20.

Asadi, S., 2018. Trigers for the generation of post-collisional porphyry Cu systems in the Kerman magmatic copper belt, Iran: new constraints from elemental and isotopic (Sr-NdHf-O) data. Gondwana Research, 64, 97-121. DOI: https://doi.org/10.1016/j.gr.2018.06.008

Asadi, S., Moore, F., Fattahi, N., 2013a. Fluid inclusion and stable isotope constraints on the genesis of the Jian copper deposit, Sanandaj–Sirjan metamorphic zone, Iran. Geofluids, 13, 66-81.

Asadi, S., Moore, F., Zarasvandi, A., Khosrojerdi, M., 2013b. First report on the occurrence of CO2-bearing fluid inclusions in the Meiduk porphyry copper deposit, Iran: implications for mineralization processes in a continental collision setting. Geologos, 19, 301-320. DOI: http://dx.doi.org/10.2478/logos−2013−0019

Asadi, S., Moore, F., Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: A review. Earth-Science Reviews, 138, 25-46. DOI: https://doi.org/10.1016/j.earscirev.2014.08.001

Atapour, H., 2007. Geochemical Evolution and Metallogeny of Potassic Igneous Rocks of the Volcano-plutonic Belt of Kerman Province with Particular Reference to Special Elements. Ph.D. Thesis. Kerman (Iran), Shahid Bahonar University, 401pp.

Atapour, H., 2017. The exploration signifcance of Ag/Au, Au/Cu, Cu/Mo, (Ag×Au)/(Cu×Mo) ratios, supra-ore and subore halos and fluid inclusions in porphyry deposits: a review. Islamic Republic of Iran, Journal of Sciences, 28, 133-146.

Atapour, H., Aftabi, A., 2021. Petrogeochemical evolution of calcalkaline, shoshonitic and adakitic magmatism associated with Kerman Cenozoic arc porphyry copper mineralization, southeastern Iran: A review. Lithos, 398-399, 106261. DOI: http://dx.doi.org/10.1016/j.lithos.2021.106261

Bakker, R.J., 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194, 3-23.

Batchelor, R.A., Bowden, P., 1985. Petrogenetic interpretation of granitoid rock series: using multinational parameters. Chemical Geology, 48, 43-55.

Berberian, F., Muir, I.D., Pankhurst, R.J., Berberian, M., 1982. Late Cretaceous and early Miocene Andean type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society of London, 139, 605-614.

Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57, 683-684.

Bodnar, R.J., 1995. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. Mineralogical Association of Canada Short Course Series, 23, 139-152.

Bodnar, R.J., Lecumberri-Sanchez, P., Moncada, D., SteeleMacInnis, M., 2014. Fluid inclusions in hydrothermal ore deposits. In: Holland, H.D., Turekian, K.K. (eds.). Treatise on geochemistry. Oxford, Elsevier, 119-142.

Bouzari, F., Clark, A.H., 2006. Prograde evolution and geothermal affinities of a major porphyry copper deposit: the Cerro Colorado hypogene protore, I Región, northern Chile. Economic Geology, 101, 95-134. DOI: https://doi.org/10.2113/gsecongeo.101.1.95

Bowers, T.S., Helgeson, H.C., 1983. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: Equation of state for H2O-CO2-NaCl

fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta, 47, 1247-1275.

Burke, E.A.J., 2001. Raman microspectrometry of fluid inclusions. Lithos, 55, 139-158.

Canet, C., Franco, S.I., Prol-Ledesma, R.M., González-Partida, E., Villanueva-Estrada, R.E., 2011. A model of boiling for fluid inclusion studies: application to the Bolaños Ag-Au-Pb-Zn epithermal deposit, Western Mexico. Journal of Geochemical Exploration, 110, 118-125.

Castillo, P.R., 2012. Adakite petrogenesis. Lithos, 135, 304-316. DOI: http://dx.doi.org/10.1016/j.lithos.2011.09.013

Charter and IDRO, 1971. Geological Survey, Iran, Geological Maps Kerman, (Yugoslav Institutes), 1:100,000.

Collins, P.L.F., 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Economic Geology, 74, 1435-1444.

Condie, K.C., 1989. Origin of the earth crust. Palaeogeography, Palaeoclimatology, Palaeoecology, 75, 57-81.

Conly, A.G., Beaudoin, G., Scott, S.D., 2006. Isotopic constraints on fluid evolution and precipitation mechanisms for the Boléo Cu-Co-Zn district. Mineralium Deposita, 41, 27-151.

Dargahi, S., Arvin, M., Pan, Y., Babaei, A., 2010. Petrogenesis of post-collisional A-type granitoids from the Urumieh-Dokhtar magmatic assemblage, Southwestern Kerman, Iran: constraints on the Arabian-Eurasian continental collision. Lithos, 115, 190-204. DOI: https://doi.org/10.1016/j.lithos.2009.12.002

De la Roche, H., Leterrier, J., Grandclaude, P., Marchal, M., 1980. A classification of volcanic and plutonic rocks using R1, R2-

diagrams and major element analysis-its relationships with current nomenclature. Chemical Geology, 29, 183-210.

Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662-665.

Defant, M.J., Kepezhinskas, P., 2001. Adakites: a review of slab melting over the past decade and the case for a slab–melt component in arcs. EOS Transactions of the American Geophysical Union, 82, 65-69.

Delavari, M., Amini, S., Schmitt, A.K., McKeegan, K.D., Mark Harrison, T., 2014. U–Pb geochronology and geochemistry of Bibi-Maryam pluton, eastern Iran: Implication for the late stage of the tectonic evolution of the Sistan Ocean. Lithos, 200-201, 197−211.

Diamond, L.W., 2003. Terms and symbols used in fluid inclusion studies. Mineralogical Association of Canada Short Course Series, 32. Last accessed: October 2023. Website: https://www.researchgate.net/publication/276024987

Dokuz, A., Tanyolu, E., Genc, S., 2006. A mantle- and a lower crust-derived bimodal suite in the Yusufeli (Artvin) area, NE Turkey: trace element and REE evidence for subductionrelated rift origin of Early Jurassic Demirkent intrusive complex. International Journal of Earth Sciences, 95, 370-394.

Drummond, M.S., Defant, M.J., Kepezhinskas, P.K., 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Transactions, Royal Society of Edinburgh (Earth Science), 87, 205-215.

Dugdale, A.L., Hagemann, S.G., 2001. The Bronzewing lodegold deposit, Western Australia: P-T-X evidence for fluid immiscibility caused by cyclic decompression in gold-bearing quartz veins. Chemical Geology, 173, 59-90.

Ellis, R., 1991. Sar-Cheshmeh. Mining Magazine, October, 192-196.

Emmons, S.F., 1918. Principles of Economic Geology. New York, McGraw-Hill, 1st edition, 550pp.

Eyuboglu, Y., Dudas, F.O., Santosh, M., Gümrük, T.E., Akbulut, K., Yi, K., Chatterjee, N., 2018. The final pulse of the Early Cenozoic adakitic activity in the Eastern Pontides Orogenic Belt (NE Turkey): An integrated study on the nature of transition from adakitic to non-adakitic magmatism in a slab window setting. Journal of Asian Earth Sciences, 157, 141-165. DOI: https://doi.org/10.1016/j.jseaes.2017.07.004

Foley, S.F., Tiepolo, M., Vannucci, R., 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417, 637-640.

Frezzotti, M.L., Tecce, F., Casagli, A., 2012. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1-20. DOI: https://doi.org/10.1016/j.gexplo.2011.09.009

Gao, Y., Hou, Z., Kamber, B., Wei, R., Meng, X., Zhao, R., 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology, 153, 105-120. DOI: http://dx.doi.org/10.1007/s00410−006−0137−9

Ghasemi, A., Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj-Sirjan zone (Iran). Journal of Asian Earth Sciences, 26, 683-693.

Guilbert, J.M., Park, C.F., 1986. The Geology of Ore Deposits. New York, W.H. Freeman, 985pp.

Habibi, T., Hezarkhani, A., 2012. Hydrothermal evolution of Daraloo porphyry copper deposit, Iran: Evidence from fluid inclusions. Arabian Journal of Geosciences, 6, 1945-1955.

Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology, 83, 197-202.

Hao, Y.J., Ren, Y.S., Yang, Q., Duan, M.X., Sun, Q., Fu, L.C., Li, C., 2015. Ore genesis and formation age of the Gaogangshan Mo deposit, Heilongjiang province, NE China. Resource Geology, 65, 177-192.

Harris, A.H., Golding, S.D., White, N.C., 2005. Bajo de la Alumbrera copper-gold deposit: stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids. Economic Geology, 100, 863-886.

Haschke, M., Pearce, J.A., 2006. Lithochemical exploration tools revisited: MnO and REE. Mendoza (Argentina), GSA Abstracts with Programs, 2 (Special Meeting), 116pp.

Haschke, M., Ahmadian, J., Murata, M., McDonald, I., 2010. Copper mineralization prevented by arc-root delamination during Alpine-Himalayan collision in Central Iran. Economic Geology, 105, 855-865. DOI: https://doi.org/10.2113/gsecongeo.105.4.855

Hassanzadeh, J., 1993. Metallogenic and tectono-magmatic events in the SE sector of the Cenozoic active continental margin of Iran (Shahr-e-Babak area, Kerman province). Ph.D. Thesis. United States of America (USA), University of California, Unpublished, 204pp.

Hattori, K.H., Keith, J.D., 2001. Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, United States of America (USA). Mineralium Deposita, 36, 799-806.

Hedenquist, J.W., Richards, J.P., 1998. The influence of geochemical techniques on the development of genetic models for porphyry copper deposits. Reviews in Economic Geology, 10, 235-256.

Hezarkhani, A., Williams-Jones, A.E., 1998. Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran: evidence from fluid inclusions and stable isotopes. Economic Geology, 93, 651-670.

Hoefs, J., 2009. Stable Isotope Geochemistry. Springer, 286pp. DOI: 10.1007/978-3-540-70708-0

Hofmann, A.W., 1997. Mantle geochemistry; the message from oceanic volcanism. Nature, 385, 219-229.

Hollings, P., Cooke, D., Clark, A., 2005. Regional geochemistry of Tertiary igneous rocks in central Chile: implications for the geodynamic environment of giant porphyry copper and epithermal gold mineralization. Economic Geology, 100, 887-904.

Holloway, J.R., 1981. Composition and volumes of supercritical fluids in the Earth crust. In: Hollister, L.S., Crawford, M.L. (eds.). Fluid Inclusions: Applications to Petrology. Quebec, Mineralogical Association of Canada, 13-38.

Hosseini, M.R., Ghaderi, M., Alirezaei, S., Sun, W., 2017. Geological characteristics and geochronology of the Takht-eGonbad copper deposit, SE Iran: a variant of porphyry type deposits. Ore Geology Reviews, 86, 440-458.

Hosseinjani Zadeh, M., Tangestani, M.H., 2011. Mapping alteration minerals using sub-pixel unmixing of ASTER data in the Sarduiyeh area, southeastern Kerman Iran. International Journal of Digital Earth, 4(6), 487-504. DOI: https://doi.org/10.1080/17538947.2010.550937

Hou, Z.Q., Duan, L.F., Lu, Y.J., Zheng, Y.C., Zhu, D.C., Yang, Z.M., Yang, Z.S., Wang, B.D., Pei, Y.R., Zhao, Z.D., McCuaig, T.C., 2015. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan orogeny. Economic Geology, 110, 1541-1575. DOI: https://doi.org/10.2113/econgeo.110.6.1541

Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548.

John, D.A., Ayuso, R.A., Barton, M.D., Blakely, R.J., Bodnar, R.J., Dilles, J.H., Gray, Floyd, Graybeal, F.T., Mars, J.C., McPhee, D.K., Seal, R.R., Taylor, R.D., Vikre, P.G., 2010. Porphyry copper deposit model, chap. B of Mineral deposit models for resource assessment. U.S. Geological Survey Scientific Investigations Report 2010–5070–B, 169pp.

Karsli, O., Ketenci, M., Uysal, I., Dokuz, A., Aydin, F., Chen, B., Kandemir, R., Wijbrans, J., 2011. Adakite-like granitoid porphyries in the Eastern Pontides, NE Turkey: potential parental melts and geodynamic implications. Lithos, 127, 354-372. DOI: https://doi.org/10.1016/j.lithos.2011.08.014

Kay, S.M., Mpodozis, C., 2001. Central Andes ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today, Geological Society of America, 11, 4-9.

Kelemen, P.B., Hanghoj, K., Green, A.R., 2003. One view of the geochemistry of subduction-related magmatic arcs, whit an emphasis on primitive andesite and lower crust. In: Rudnick, R.L., Holland, H.D., Turekian, K.K. (eds.). Treatise on Geochemistry. Elsevier, 3, 593-659. ISBN 0-08-043751-6

Khosravi, M., Rajabzadeh, M.A., Qinb, K., Asadid, H., 2019. Tectonic setting and mineralization potential of the Zefreh porphyry Cu-Mo deposit, central Iran: Constraints from petrographic and geochemical data. Journal of Geochemical Exploration, 199, 1-15.

Kreuzer, O.P., 2005. Intrusion-hosted mineralization in the Charters Towers goldfield, north Queensland: new isotopic and fluid inclusion constraints on the timing and origin of the auriferous veins. Economic Geology, 100, 1583-1603.

Lang, J.R., Titley, S.R., 1998. Isotopic and geochemical characteristics of Laramide magmatic system in Arizona and implications for the genesis of porphyry copper deposits. Economic Geology, 93, 138-170.

Li, N., Chen, Y.J., Zhang, H., Zhao, T.P., Deng, X.H., Wang, Y., Ni, Z.Y., 2007. Molybdenum deposits in East Qinling. Frontiers in Earth Sciences, 14, 186-198.

Li, N., Ulrich, T., Chen, U.J., Thomsen, T.B., Pease, V., Pirajno, F., 2012. Fluid evolution of the Yuchiling porphyry Mo deposit, East Qinling, China. Ore Geology Reviews, 48, 442-459.

Liang, H.Y., Sun, W.D., Su, W.C., Zartman, R.E., 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, 104, 587-596.

Liu, Y.S., Gao, S., Hu, Z.C., Gao, C.G., Zong, K.Q., Wang, D.B., 2010. Continental and oceanic crust recycling-induced meltperidotite interactions in the Trans-North China Orogen: U−Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51, 537-571.

Macpherson, C.G., Dreher, S.T., Thirwall, M.F., 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planetary Science Letters, 243, 581-593.

Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635-643.

Mao, J., Pirajno, F., Lehmann, B., Luo, M., Berzina, A., 2014. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. Journal of Asian Earth Sciences, 79, 576-584.

Martin, H., 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46, 411-429. DOI: https://doi.org/10.1016/S0024−4937(98)00076−0

Martin, H., Smith, R.H., Rapp, R., Moyen, J.F., Champion, D., 2005. An overview of adakite, tonalite trondhjemite-granodiorite (TTG), and sanitoid: relationships and some implications for crustal evolution. Lithos, 79, 1-24.

McClay, K.R., Whitehouse, P.S., Dooley, T., Richards, M., 2004. 3D evolution of fold and thrust belts formed by oblique convergence. Marine and Petroleum Geology, 21, 857-877.

McInnes, B.I.A., Evans, N.J., Belousova, E., Griffin, W.L., 2003. Porphyry copper deposits of the Kerman belt, Iran: timing of mineralization and exhumation processes. Scientific Research and Reports, Melbourne, Commonwealth Scientific and Industrial Research Organisation, 41pp.

McInnes, B.I.A., Evans, N.J., Fu, F.Q., Garwin, S., Belousova, E., Griffin, W.L., Bertens, A., Sukama, D., Permanadewi, S., Andrew, R.L., Deckart, K., 2005. Thermal history analysis of selected Chilean, Indonesian, and Iranian porphyry Cu-MoAu deposits. In: Porter, T.M. (ed.). Super Porphyry Copper and Gold Deposits: A Global Perspective. Adelaide, PGC publishing, 1-16.

Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37, 215-224.

Mirnejad, H., Mathur, R., Hassanzadeh, J., Shafie, B., Nourali, S., 2013. Linking Cu mineralization to host porphyry emplacement: Re-Os ages of molybdenites versus U–Pb ages of zircons and sulfur isotope compositions of pyrite and chalcopyrite from the Iju and Sarkuh porphyry deposits in southeast Iran. Economic Geology, 108, 861-870.

Mohajjel, M., Fergusson, C.L., Sahandi, M.R., 2003. Cretaceous–Tertiary convergence and continental collision, SanandajSirjan Zone, Western Iran. Journal of Asian Earth Sciences, 21, 397-412.

Mohammaddoost, H., Ghaderi, M., Kumar, T.V., Hassanzadeh, J., Alirezaei, S., Stein, J.H., Babu, E., 2017. Zircon U−Pb and molybdenite Re−Os geochronology, with S isotopic composition of sulfides from the Chah-Firouzeh porphyry Cu deposit, Kerman Cenozoic arc, SE Iran. Ore Geology Reviews, 88, 384-399. DOI: https://mrdata.usgs.gov/sir20105090z/show−sir20105090z.php?id=9285

Moradian, A., 1997. Geochemistry, geochronology and petrography of feldspathoid-bearing rocks in Urumieh-Dokhtar volcanic belt, Iran. Ph.D. Thesis. Australia, University of Wollongong, 412pp.

Mineral Resources Data System (MRDS) USGS, 2015. Last accessed: November 2023. Website: https://mrdata.usgs.gov/sir20105090z/show-sir20105090z.php?id=9285

Mungall, J.E., 2002. Roasting the mantle: slab melting and the genesis of major Au and Aurich Cu deposits. Geology, 30, 915-918.

NICICo, 2010. Geology and alteration of Daralu area. Report of 1/1000 map exploration. Zarnab exploration consulting Company [in Persian]. Iranian Mines & Mining Industries Development & Renovation (IMIDRO), 78pp.

NICICo, 2021. Final report of exploration in the Daralu deposit. Kian Madan Pars & Sazeh Pardazi Iran Consulting Engineering Company, Tehran, internal reports, 150pp.

Ohmoto, H., Rye, R.O., 1979. Isotopes of sulfur and carbon. In: Barnes, H.L. (ed.). Geochemistry of Hydrothermal Deposits. John Wiley & Sons, 509-567.

Peacock, S.M., Rusher, T., Thompson, A.B., 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121, 224-227.

Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calcalkaline volcanic rocks from Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81.

Pirajno, F., 2009. Hydrothermal processes and mineral systems. Springer, Geological Survey of Western Australia, 1250pp.

Pokrovski, G.B., Borisova, A.Y., Harrichoury, J., 2008. The effect of sulfur on vapor-liquid fractionation of metals in hydrothermal systems. Earth and Planetary Science Letters, 266, 345-362.

Profeta, L., Ducea, M.N., Chapman, J.B., Paterson, S.R., Gonzales, S.M.H., Kirsch, M., Petrescu, L., DeCelles, P.G., 2015. Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, Nature Publishing Group, 17786.

Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites

and tonalites. Precambrian Research, 51, 1-25.

Rapp, R.P., Shimizu, N., Norman, M.D., Applegate, G.S., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 160, 335-356.

Rapp, R.P., Xiao, L., Shimizu, N., 2002. Experimental constraints on the origin of potassium-rich adakite in east China. Acta Petrologica Sinica, 18, 293-311.

Richards, J.R., 2009. Postsubduction porphyry Cu–Au and epithermal Au deposits: products of remelting of subductionmodified lithosphere. Geology, 37, 247-250.

Richards, J.P., 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40,

-26. DOI: https://doi.org/10.1016/j.oregeorev.2011.05.006

Richards, J.P., 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geology Reviews, 70, 323-345. DOI: https://doi.org/10.1016/j.oregeorev.2014.11.009

Richards, J.R., Kerrich, R., 2007. Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4), 537-576. DOI: https://doi.org/10.2113/gsecongeo.102.4.537

Richards, J.P., Boyce, A.J., Pringle, M.S., 2001. Geological evolution of the Escondida area, northern Chile: a model for spatial

and temporal localization of porphyry Cu mineralization. Economic Geology, 96, 271-305.

Richards, J.P., Spell, T., Rameh, E., Razique, A., Fletcher, T., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan. Economic Geology, 107, 295-332.

Robb, L., 2005. Introduction to Ore-forming Processes. Oxford, Blackwell publishing, 1st edition, 386pp.

Rollinson, H.R., 1993. Using geochemical data: evaluation, presentation, interpretation. Singapore, Longman Singapore Publishers (Pte) Ltd, 1-352.

Rusk, B.G., Reed, M.H., Dilles, J.H., 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Economic Geology, 103, 307-334. DOI: http://dx.doi.org/10.2113/gsecongeo.103.2.307

Seedorff, E., Dilles, J.H., Proffett, J.M.Jr., Einaudi, M.T., Zurcher, L., Stavast, W.J.A., Johnson, D.A., Barton, M.D., 2005. Porphyry deposits: Characteristics and origin of hypogene features. Society of Economic Geologists, Economic Geology 100th Anniversary 1905-2005, 251-298.

Shafiei, B., Haschke, M., Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44, 265-283.

Shahabpour, J., 1992. Unroofing fragmentites as a reconnaissance exploration tool in the central Iranian porphyry copper belt. Economic Geology, 87, 1599-1606.

Shahabpour, J., 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences, 24, 405-417.

Shanks, W.C., 2014. Stable Isotope Geochemistry of Mineral Deposits. U.S. Geological Survey, Treatise on Geochemistry 2nd Edition, 59-82. DOI: http://dx.doi.org/10.1016/B978−0−08−095975−7.01103−7

Shepherd, T.J., Rankin, A.H., Alderton, D.H.M., 1985. A practical guide to fluid inclusion studies. London, Blackie Press, 239pp.

Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology, 105, 3-41.

Simmons, F.S., Browne, P.R.L., 2000. Hydrothermal Minerals and Precious Metals in the Broadlands-Ohaaki Geothermal System: Implications for Understanding Low-Sulfidation Epithermal Environments. Economic Geology, 95(5), 971-999.

Sinclair, W.D., 2007. Porphyry deposits. In: Goodfellow, W.D. (ed.). Mineral deposits of Canada: A Synthesis of Major DepositTypes, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Newfoundland (Canada), Geological Association of Canada, Mineral Deposits Division, 5 (Special Publication), 223-243.

Singer, D.A., Berger V.I., Moring B.C., 2008. Porphyry copper deposits of the word: Database and grade and tonnage models. U.S. Geological Survey, Open-File Report 1155, 45pp.

Stocklin, J., 1968. Structural history and tectonics of Iran: a review. American Association of Petroleum Geologists, 52 (Bulletin), 1229-1258.

Sun, S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications composition and processes. Geological Society. 42, 313-345.

Taghipour, N., 2007. The Application of Fluid Inclusions and Isotope Geochemistry as Guides for Exploration, Alteration and Mineralization at the Miduk Porphyry Copper Deposit, Shar-e-Babak, Kerman. Ph.D Thesis. Kerman (Iran), Shahid Bahonar University of Kerman, 305pp.

Topuz, G., Okay, A.I., Altherr, R., Schwarz, W.H., Siebel, W., Zack, T., Satır, M., Şen, C., 2011. Post collisional adakite-like magmatism in the Ağvanis Massif and implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey). Lithos, 125, 131-150.

Van den Kerkhof, A.M., Hein, U.F., 2001. Fluid inclusion petrography. Lithos, 55, 27-47.

Wagner, T., Boyce, A.J., Jonsson, E., Fallick, A.E., 2004. Laser microprobe sulphur isotope analysis of arsenopyrite: experimental calibration and application to the Boliden AuCu-As massive sulphide deposit. Ore Geology Reviews, 25, 311-325.

Wallace, P.J., 2005. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. Journal of Volcanology and Geothermal Research, 140, 217-240.

Wang, Q., Xu, J.F., Jian, P., Bao, Z.W., Zhao, Z.H., Li, C.F., Xiong, X.L., Ma, J.L., 2006. Petrogenesis of adakitic porphyries in an extentional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47, 119-144.

Wang, R., Zhu, D., Wang, Q., Hou, Z., Yang, Z., Zhao, Z., Mo, X., 2020. Porphyry mineralization in the Tethyan orogeny. Science China Earth Sciences, 63, 2042-2067. DOI: 10.1007/s11430-019-9609-0

Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185-187.

Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposit. Lithos, 55, 229-272.

Xiao, L., Clemens, J.D., 2007. Origin of potassic (C-type) adakite magmas: experimental and field constraints. Lithos, 95, 399-414.

Xiong, X.L., Li, X.H., Xu, J.F., Li, W.X., Zhao, Z.H., Wang, Q., 2003. Extremely high-Na adakite-like magmas derived from alkali-rich basaltic underplate: the late Cretaceous Zhantang andesites in the Huichang Basin, SE China. Geochemical Journal, 37, 233-252.

Xiong, X.L., Xia, B., Xu, J.F., Niu, H.C., Xiao, W.S., 2006. Na depletion in modern adakites via melt/rock reaction within the sub-arc mantle. Chemical Geology, 229, 273-292.

Yan Wang, C., Zhou, F.Z., Qi, L., 2007. Permian flood basalts and mafic intrusions in the Jinping (SW China)-Song Da (northern Vietnam) district: mantle sources, crustal contamination and sulfide segregation. Chemical Geology, 243, 317-343.

Yang, Z., Hou, Z., Song, Y., Li, Z., 2008. Geology of the Qulong copper-molybdenum deposit, Tibet. Oslo, August 6–14, 33rd

International Geological Congress.

Yang, Y.F., Chen, Y.J., Li, N., Mi, M., Xu, Y.L., Li, F.L., Wan, S.Q., 2013. Fluid inclusion and isotope geochemistry of the Qian’echong giant porphyry Mo deposit, Dabie Shan, China: a case of NaCl-poor, CO2-rich fluid systems. Journal of Geochemical Exploration, 124, 1-13.

Zarasvandi, A., Rezaei, M., Sadeghi, M., Lentz, D., Adelpour, M., Pourkaseb, H., 2015. Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh-Dokhtar magmatic arc (UDMA), Iran. Ore Geology Reviews, 70, 407-423.

Zarasvandi, A., Rezaei, M., Raith, J.G., Asadi, S., Lentz, D., 2019. Hydrothermal fluid evolution in collisional Miocene porphyry copper deposits in Iran: Insights into factors controlling metal fertility. Ore Geology Reviews, 105, 183-200. DOI: https://doi.org/10.1016/j.oregeorev.2018.12.027

Zhang, Y., Frantz, J.D., 1987. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chemical Geology, 64, 335-350.

Zürcher, L., Bookstrom, A.A., Hammarstrom, J.M., Mars, J.C., Ludington, S., Zientek, M.L., Dunlap, P., Wallis, J., 2019. Tectonomagmatic evolution of porphyry belts in the central Tethys region of Turkey, the Caucasus, Iran, western Pakistan and southern Afghanistan. Ore Geology Reviews, 111, 102849. DOI: https://doi.org/10.1016/j.oregeorev.2019.02.034

Downloads

Published

2023-12-15

Issue

Section

Articles