Investigation of numerical and analytical solutions of 1D steady and transient flow in unsaturated layered soils

Investigation of numerical and analytical solut

Authors

  • Ahmed Chetti
  • Habib Trouzine
  • Khaled Korichi Hydraulics department, Faculty of Technology, Djillali Liabes University of Sidi Bel Abbes, Bp 89, 22000, Sidi Bel Abbes, Algeria
  • Mohammed Amin Hakmi

DOI:

https://doi.org/10.1344/GeologicaActa2024.22.8

Keywords:

Numerical, Analytical, Steady, Transient, Unsaturated, Layered soil

Abstract

This study presents a comprehensive numerical simulation and analytical modeling of steady and transient flow in heterogeneously saturated soils. Solving the Richards equation involves challenges due to the nonlinearity between the pressure and the water content. Two constitutive models are used to describe the complex relationships between moisture content, hydraulic head, and hydraulic conductivity namely, Gardner model and Van Genuchten-Mualem model. Through detailed simulations, four configurations are investigated, including the capillary barrier effect, bi-layered soil dynamics in paddy fields, and infiltration in multi-layered soil in both saturated and unsaturated steady-state regimes. The comparison between numerical results and the established analytical model shows a good agreement. It underscores the usefulness of the model to reproduce saturated and unsaturated seepage flow in bi-layered and multi-layered soils. Moreover, it captures the dynamic interactions between infiltration and evaporation during the transient phase. These findings offer insights for water resource management, land subsidence mitigation, and environmental sustainability.

Resum
Aquest estudi presenta una simulació numèrica exhaustiva i una modelització analítica del flux en estat estacionari i transitori en sòls amb saturació heterogènia. La resolució de l’equació de Richards representa un repte a causa de la relació no lineal entre la pressió i el contingut d’aigua. S’han utilitzat dos models constitutius —el model de Gardner i el model de Van Genuchten-Mualem— per descriure les interaccions complexes entre el contingut d’humitat, la càrrega hidràulica i la conductivitat hidràulica. Mitjançant simulacions detallades, s’analitzen quatre configuracions, incloent-hi l’efecte de barrera capil·lar, la dinàmica del sòl biestratificat en arrossars i la infiltració en sòls multiestratificats, tant en condicions estacionàries saturades com no saturades. La comparació entre els resultats numèrics i el model analític mostra una bona concordança, subratllant l’eficàcia del model en la reproducció del flux de filtració en sòls biestratificats i multiestratificats, tant en règims saturats com no saturats. A més, reprodueix amb precisió les interaccions dinàmiques entre infiltració i evaporació durant les fases transitòries. Aquests resultats aporten coneixements valuosos per a la gestió dels recursos hídrics, la mitigació de la subsidència del terreny i la sostenibilitat ambiental.

Paraules clau: Numèric. Analític. Estat estacionari. Estat transitori. No saturat. Sòl estratificat.

References

Baca, R.G., Chung, J.N., Mulla, D.J., 1997. Mixed transform finite element method for solving the nonlinear equation for flow in variably saturated porous media. International Journal for Numerical Methods in Fluids, 24(5), 441-455.

Bastian, P., Helmig, R., 1999. Efficient fully coupled solution techniques for two-phase flow in porous media. Parallel multigrid solution and large-scale computations. Advances in Water Resources, 23, 199-216.

Baver, L.D., Gardner, W.H., Gardner, W.R., 1972. Soil Physics. New York, John Wiley & Sons, 4th ed., 498pp.

Beliaev, A.Y., Schotting, R.J., 2001. Analysis of a New Model for Unsaturated Flow in Porous Media Including Hysteresis and Dynamic Effects. Computational Geosciences, 5, 345-368. DOI: 10.1023/A:1014547019782

Bergamaschi, L., Putti, M., 1999. Mixed finite element and Newton-type linearizations for the solution of Richards equation. International Journal for Numerical Methods in Engineering, 45(8), 1025-1046.

Brooks, R.H., Corey, A.T., 1964. Hydraulic properties of porous medium. Civil Engineering Department, Colorado State University, Fort Collins, Colorado, Hydrology Paper, 3, 37pp.

Gardner, W.R., 1958. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Science, 85, 228-232.

Giudici, M., 2023. Modeling Water Flow in Variably Saturated Porous Soils and Alluvial Sediments. Sustainability, 15, 15723. DOI: 10.3390/su152215723

Green, W.H., Ampt, G.A., 1911. Studies on soil physics. Journal of Agricultural Science, 4(1), 1-24. DOI: 10.1017/S0021859600001441

Haverkamp, R., Vauclin, M., Touma, J., Wierenga, P.J., Vachaud, G., 1977. A comparison of numerical simulation models for one-dimensional infiltration. Soil Science Society of America Journal, 41(2), 285-294.

Helmig, R, Huber, R., 1998. Comparison of Galerkin-type discretization techniques for two-phase flow in heterogeneous porous media. Advances in Water Resources, 21, 697-711.

Jacques, D., Šimůnek, J., Mallants, D., van Genuchten, M.Th., 2018. The HPx software for multicomponent reactive transport during variably-saturated flow: Recent developments and applications. Journal of Hydrology and Hydromechanics, 66(2), 211-226. DOI: 10.1515/johh-2017-0049

Khaleel, R., Yeh, T.-C.J., Lu, Z., 2002. Upscaled Flow and Transport properties for Heterogeneous Unsaturated Media. Water Resources Research, 38(5), 11-1-11-12.

Khire, M.V., Benson, C.H., Bosscher, P.J., 1997. Water Balance Modeling of Earthen Final Covers. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 123(8), 744-754.

Lee, J.Y., Kim, G.B., 2022. An advanced mixed Lagrangian-Eulerian and finite element method to simulate 3-D subsurface variably saturated flows. Geosciences Journal, 26, 399-413. DOI: 10.1007/s12303-021-0039-x

Liakopoulos, A.C., 1965. Theoretical solution of the unsteady unsaturated flow problems in soils. Bulletin International Association of Scientific Hydrology, 10(1), 5-39. DOI: https://doi.org/10.1080/02626666509493368

Lin, H.C., Richards, D.R., Yeh, G.T., Cheng, J.R., Cheng, H.P., Jones, N.L., 1997. FEMWATER: a three-dimensional finite element computer model for simulating density-dependent flow and transport in variably saturated media. Vicksburg, Technical Report, CHL-97-12, U.S. Army Corps of Engineers, 142pp.

Lu, Z., Zhang, D., 2004. Analytical solutions to steady state unsaturated flow in layered, randomly heterogeneous soils via Kirchhoff transformation. Advances in Water Resources, 27, 775-784.

Lu, Z., Zhang, D., Robinson, B.A., 2007. Explicit analytical solutions for one-dimensional steady state flow in layered, heterogeneous unsaturated soils under random boundary conditions. Water Resources, 43, W09413.

Mallareddy, M., Thirumalaikumar, R., Balasubramanian, P., Naseeruddin, R., Nithya, N., Mariadoss, A., Eazhilkrishna, N., Choudhary, A.K., Deiveegan, M., Subramanian, E., Padmaja, B., Vijayakumar, S., 2023. Maximizing Water Use Efficiency in Rice Farming: A Comprehensive Review of Innovative Irrigation Management Technologies. Water, 15(10), 1802. DOI: 2073-4441/15/10/1802

Philip, J.R., 1957. The theory of infiltration: 1. The infiltration equation and its solution. Soil Science Society of America Journal, 83, 435-448.

Philip, J.R., 1969. Theory of infiltration. Advances in Hydroscience, 5, 215-296.

Ross, B., 1990. The Diversion Capacity of Capillary Barriers. Water Resources Research, 26(10), 2625-2629.

Rybak, I., Magiera, J., Helmig, R., 2015. Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems. Computational Geosciences, 19, 299-309. DOI: 10.1007/s10596-015-9469-8

Sabetamal, H., Sheng, D., Carter, J.P., 2022. Coupled hydro-mechanical modelling of unsaturated soils; numerical implementation and application to large deformation problems. Computers and Geotechnics, 152, 105044. DOI: 10.1016/j.compgeo.2022.105044

Shah, S.S., Mathur, S., Chakma, S., 2022. Numerical modeling of one-dimensional variably saturated flow in a homogeneous and layered soil–water system via mixed form Richards equation with Picard iterative scheme. Modeling Earth Systems and Environment, 2, 2027-2037. DOI: 10.1007/s40808-022-01588-z

Srivastava, R., Yeh, T.-C.J., 1991. Analytical Solutions for one-dimensional, Transient Infiltration toward the Water Table in Homogeneous and Layered Soils. Water Resources Research, 27(5), 753-762.

Suk, H., Yeh, G.T., 2009. Multidimensional finite-element particle tracking method for solving complex transient flow problems. Journal of Hydrologic Engineering, 14, 759-766.

Van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892-898.

Vogel, T., Van Genuchten, M.T., Cislerová, M., 2001. Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions. Advances in Water Resources, 24(2), 133-144. DOI: 10.1016/S0309-1708(00)00037-3

Zhang, D., 2002. Stochastic Methods for Flow in Porous Media: Coping with Uncertainty. San Diego (California), Academic Press, 368pp.

Downloads

Published

2024-10-31

Issue

Section

Articles