Fossil corals with skeletal lesions comparable to modern ones

Skeletal abnormalities on Cretaceous corals

Authors

  • Telm Bover-Arnal Universitat de Barcelona (UB)
  • André Strasser Département de Géosciences, Université de Fribourg
  • Ramon Salas Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona

DOI:

https://doi.org/10.1344/GeologicaActa2024.22.9

Keywords:

Coral, Skeletal anomaly, Lesion, Iberian Chain, Aptian

Abstract

Whereas post-mortem bioerosional features such as bivalve, sponge or worm borings are frequently preserved in ancient corals, reports of ante-mortem skeletal anomalies are rare and virtually non-existent from Mesozoic specimens. Here, we document the occurrence of fossil skeletal lesions produced during the life span of the colonies in exceptionally well-preserved Aptian (Early Cretaceous) scleractinians from the Maestrat Basin (East Iberia). These ante-mortem damage features are characterized by millimetric to centimetric areas of skeletal depression, as well as upward growth around damaged areas indicating regeneration. Depressed skeletal lesions are commonly overprinted by post-mortem lithophagid borings. Distribution of skeletal anomalies on the colonies can be focal or multifocal, and their location basal, medial and/or apical. The extent of the skeletal anomalies can be mild (occupying <10% of the colony) to extreme (occupying ≥50% of the colony). The edges of the skeletal anomalies are distinct (disk-shaped) or annular (ring-shaped), the margins are mainly smooth to uneven, and the shapes are circular, oblong, pyriform, linear, or irregular. The skeletal anomalies exhibited by the corals are comparable to tissue lesions produced in modern corals either by predation, bioerosion or disease, which may be followed by skeletal overgrowth or denudation. Although demonstrating disease in fossil colonies is challenging, there is no reason to believe that corals did not experience diseases back in the Cretaceous. This paper gives an example of the potential of coral anomalies originating from tissue lesions and skeletal damage to be preserved in the geological record, a factor that may have been often overlooked in the study of fossil coral communities.

References

Aeby, G.S., Ushijima, B., Campbell, J.E., Jones, S., Williams, G.J., Meyer, J.L., Häse, C., Paul, V.J., 2019. Pathogenesis of a tissue loss disease affecting multiple species of corals along the Florida reef tract. Frontiers in Marine Science, 6, 678, 1-18.

Álvarez-Pérez, G., Busquets, P., 2012. Formas anómalas en los corales eocenos de la Cuenca de Igualada (Noreste de España). [Anomalous forms of the Eocene corals in the Igualada Basin (North-East Spain)]. Revista Española de Paleontología, 27, 15-28.

Bennett, P., Keuper-Bennett, U., Balazs, G.H., 2000. Changing the landscape: evidence for detrimental impacts to coral reefs by Hawaiian marine turtles. Proceedings of the twentieth annual symposium on sea turtle biology and conservation. 29 February-4 March 2000, Orlando (Florida, U.S.A.), NOAA technical memorandum NMFS-SEFSC-477, 287-288.

Benzoni, F., Galli, P., Pichon, M., 2009. Pink spots on Porites: not always a coral disease. Coral Reefs, 29, 153.

Bover-Arnal, T., Salas, R., Moreno-Bedmar, J.A., Bitzer, K., 2009. Sequence stratigraphy and architecture of a late Early-Middle Aptian carbonate platform succession from the western Maestrat Basin (Iberian Chain, Spain). Sedimentary Geology, 219, 280-301.

Bover-Arnal, T., Moreno-Bedmar, J.A., Salas, R., Skelton, P.W., Bitzer, K., Gili, E., 2010. Sedimentary evolution of an Aptian syn-rift carbonate system (Maestrat Basin, E Spain): effects of accommodation and environmental change. Geologica Acta, 8(3), 249-280.

Bover-Arnal, T., Salas, R., Martín-Closas, C., Schlagintweit, F., Moreno-Bedmar, J.A., 2011. Expression of an oceanic anoxic event in a neritic setting: Lower Aptian coral rubble deposits from the western Maestrat Basin (Iberian Chain, Spain). Palaios, 26, 18-32.

Bover-Arnal, T., Löser, H., Moreno-Bedmar, J.A., Salas, R., Strasser, A., 2012. Corals on the slope (Aptian, Maestrat Basin, Spain). Cretaceous Research, 37, 43-64.

Bover-Arnal, T., Salas, R., Guimerà, J., Moreno-Bedmar, J.A., 2014. Deep incision in an Aptian carbonate succession indicates major sea-level fall in the Cretaceous. Sedimentology, 61, 1558-1593.

Bover-Arnal, T., Pascual-Cebrian, E., Skelton, P.W., Gili, E., Salas, R., 2015. Patterns in the distribution of Aptian rudists and corals within a sequence-stratigraphic framework (Maestrat Basin, E Spain). Sedimentary Geology, 321, 86-104.

Bover-Arnal, T., Moreno-Bedmar, J.A., Frijia, G., Pascual-Cebrian, E., Salas, R., 2016. Chronostratigraphy of the Barremian-Early Albian of the Maestrat Basin (E Iberian Peninsula): integrating strontium-isotope stratigraphy and ammonoid biostratigraphy. Newsletters on Stratigraphy, 49, 41-68.

Canérot, J., Crespo, A., Navarro, D., 1979. Montalbán, hoja nº 518. Mapa Geológico de España 1:50.000. 2ª Serie. 1ª Edición. Madrid, Servicio de Publicaciones, Ministerio de Industria y Energía, 31pp.

Canérot, J., Cugny, P., Pardo, G., Salas, R., Villena, J., 1982. Ibérica Central-Maestrazgo. In: García, A. (ed.). El Cretácico de España. Madrid, Universidad Complutense de Madrid, 273-344.

Chan, B.K.K., Chen, Y.-Y., Lin, H.-C., 2013. Biodiversity and host specificity of coral barnacles of Galkinia (Cirripedia: Pyrgomatidae) in Taiwan, with descriptions of six new species. Journal of Crustacean Biology, 33, 392-431.

Chazottes, V., Le Campion-Alsumard, T., Peyrot-Clausade, M., 1995. Bioerosion rates on coral reefs: interactions between macroborers, microborers and grazers (Moorea, French Polynesia). Palaeogeography, Palaeoclimatology, Palaeoecology, 113, 189-198.

Clements, K.D., German, D.P., Piché, J., Tribollet, A., Choat, J.H., 2017. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biological Journal of the Linnean Society, 120, 729-751.

Cole, A., Pratchett, M., Jones, G., 2008. Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish Fisheries, 9, 286-307.

Coles, S., Bolick, H., 2007. Invasive introduced sponge Mycale grandis overgrows reef corals in Kane'ohe Bay, O'ahu, Hawai'i. Coral Reefs, 26, 911.

Cors, J., Heimhofer, U., Adatte, T., Hochuli, P.A., Huck, S., Bover-Arnal, T., 2015. Spore-pollen assemblages show delayed terrestrial cooling in the aftermath of OAE 1a. Geological Magazine, 152, 632-647.

Dalton, S.J., Godwin, S., 2006. Progressive coral tissue mortality following predation by a corallivorous nudibranch (Phestilla sp.). Coral Reefs, 25, 529.

De'ath, G., Fabricius, K.E., Sweatman, H., Puotinen, M., 2012. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences, 109, 17995-17999.

Eckrich, C.E., Sabine Engel, M., 2013. Coral overgrowth by an encrusting red alga (Ramicrusta sp.): a threat to Caribbean reefs? Coral Reefs, 32, 81-84.

Elias, R.J., 1984. Paleobiologic significance of fossulae in North American Late Ordovician solitary rugose corals. Paleobiology, 10, 102-114.

Elias, R.J., 1986. Symbiotic relationships between worms and solitary rugose corals in the Late Ordovician. Paleobiology, 12, 32-45.

Erftemeijer, P.L.A., Riegl, B., Hoeksema, B.W., Todd, P.A., 2012. Environmental impacts of dredging and other sediment disturbances on corals: A review. Marine Pollution Bulletin, 64, 1737-1765.

Falces, S., 1997. Borings, embeddings and pathologies against microstructure. New evidences on the nature of the microstructural elements in rugose corals. Boletín de la Real Sociedad Española de Historia Natural (sec. Geológica), 92, 99-116.

Fisher, E.M., Fauth, J.E., Hallock, P., Woodley, C.M., 2007. Lesion regeneration rates in reef-building corals Montastraea spp. as indicators of colony condition. Marine Ecology Progress Series, 339, 61-71.

Garcia, R., Moreno-Bedmar, J.A., Bover-Arnal, T., Company, M., Salas, R., Latil, J.L., Martín-Martín, J.D., Gomez-Rivas, E., Bulot, L.G., Delanoy, G., Martínez, R., Grauges, A., 2014. Lower Cretaceous (Hauterivian–Albian) ammonite biostratigraphy in the Maestrat Basin (E Spain). Journal of Iberian Geology, 40, 99-112.

Gautier, F., 1980. Villarluengo, hoja nº 543. Mapa Geológico de España 1:50.000. 2ª Serie. 1ª Edición. Madrid, Servicio de Publicaciones, Ministerio de Industria y Energía, 45pp.

Gili, E., Skelton, P.W., Bover-Arnal, T., Salas, R., Obrador, A., Fenerci-Masse, M., 2016. Depositional biofacies model for post-OAE1a Aptian carbonate platforms of the western Maestrat Basin (Iberian Chain, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 453, 101-114.

Guimerà, J., 1994. Cenozoic evolution of eastern Iberia: Structural data and dynamic model. Acta Geologica Hispanica, 29, 57-66.

Guimerà, J., 2018. Structure of an intraplate fold-and-thrust belt: The Iberian Chain. A synthesis. Geologica Acta, 16(4), 427-438.

Harmelin-Vivien, M.L., 1994. The effects of storms and cyclones on coral reefs: a review. Journal of Coastal Research, 12, 211-231.

Hoegh-Guldberg, O., Poloczanska, E.S., Skirving, W., Dove, S., 2017. Coral Reef Ecosystems under Climate Change and Ocean Acidification. Frontiers in Marine Science, 4, 158, 1-20.

Holmes, K.E., Edinger, E.N., Hariyadi, Limmon, G.V., Risk, M.J., 2000. Bioerosion of live massive corals and branching coral rubble on Indonesian coral reefs. Marine Pollution Bulletin, 40, 606-617.

Insalaco, E., 1998. The descriptive nomenclature and classification of growth fabrics in fossil scleractinian reefs. Sedimentary Geology, 118, 159-186.

Jones, B., Pemberton, S.G., 1988. Lithophaga borings and their influence on the diagenesis of corals in the Pleistocene Ironshore Formation of Grand Cayman Island, British West Indies. Palaios, 3, 3-21.

Kelly, S.R.A., Bromley, R.G., 1984. Ichnological nomenclature of clavate borings. Palaeontology, 27, 793-807.

Kleemann, K.H., 1980. Boring bivalves and their host corals from the Great Barrier Reef. Journal of Molluscan Studies, 46, 13-54.

Klompmaker, A.A., Portell, R.W., van der Meij, S.E.T., 2016. Trace fossil evidence of coral-inhabiting crabs (Cryptochiridae) and its implications for growth and paleobiogeography. Scientific Reports, 6, 23443, 1-11.

Knutson, T.R., McBride, J.L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J.P., Srivastava, A.K., Sugi, M., 2010. Tropical cyclones and climate change. Nature Geoscience, 3, 157-163.

Kołodziej, B., Golubic, S., Bucur, I.I., Radtke, G., Tribollet, A., 2012. Early Cretaceous record of microboring organisms in skeletons of growing corals. Lethaia, 45, 34-45.

Kołodziej, B., Idakieva, V., Ivanov, M., Salamon, K., 2016. New record of endolithic algae syn vivo associated with an Early Cretaceous coral. Carnets de Géologie, 16, 633-640.

Kuta, K., Richardson, L., 2002. Ecological aspects of black band disease of corals: relationships between disease incidence and environmental factors. Coral Reefs, 21, 393-398.

Liesa, C.L., Soria, A.R., Meléndez, N., Meléndez, A., 2006. Extensional fault control on the sedimentation patterns in a continental rift basin: El Castellar Formation, Galve sub-basin, Spain. London, Journal of the Geological Society, 163, 487-498.

Lirman, D., 2000. Lesion regeneration in the branching coral Acropora palmata: effects of colonization, colony size, lesion size, and lesion shape. Marine Ecology Progress Series, 197, 209-215.

Martín-Chivelet, J., López-Gómez, J., Aguado, R., Arias, C., Arribas, J., Arribas, M.E., Aurell, M., Bádenas, B., Benito, M.I., Bover-Arnal, T., Casas-Sainz, A., Castro, J.M., Coruña, F., de Gea, G.A., Fornós, J.J., Fregenal-Martínez, M., García-Senz, J., Garófano, D., Gelabert, B., Giménez, J., González-Acebrón, J., Guimerà, J., Liesa, C.L., Mas, R., Meléndez, N., Molina, J.M., Muñoz, J.A., Navarrete, R., Nebot, M., Nieto, L.M., Omodeo-Salé, S., Pedrera, A., Peropadre, C., Quijada, I.E., Quijano, M.L., Reolid, M., Robador, A., Rodríguez-López, J.P., Rodríguez-Perea, A., Rosales, I., Ruiz-Ortiz, P.A., Sàbat, F., Salas, R., Soria, A.R., Suarez-Gonzalez, P., Vilas, L., 2019. The Late Jurassic–Early Cretaceous Rifting. In: Quesada, C., Oliveira, J.T. (eds.). The Geology of Iberia: A Geodynamic Approach. Volume 3: The Alpine Cycle. Heidelberg, Springer, 60-63. DOI: https://doi.org/10.1007/978-3-030-11295-0

Maynard, J., van Hooidonk, R., Eakin, C.M., Puotinen, M., Garren, M., Williams, G., Heron, S.F., Lamb, J., Weil, E., Willis, B., Harvell, C.D., 2015. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nature Climate Change, 5, 688-694.

Medellín-Maldonado, F., Cruz-Ortega, I., Pérez-Cervantes, E., Norzogaray-López, O., Carricart-Ganivet, J.P., López-Pérez, A., Alvarez-Filip, L., 2023. Newly deceased Caribbean reef-building corals experience rapid carbonate loss and colonization by endolithic organisms. Communications Biology, 6, 934, 1-11.

Morais, J., Morais, R., Tebbett, S.B., Bellwood, D.R., 2022a. On the fate of dead coral colonies. Functional Ecology, 36, 3148-3160.

Morais, J., Cardoso, A.P.L.R., Santos, B.A., 2022b. A global synthesis of the current knowledge on the taxonomic and geographic distribution of major coral diseases. Environmental Advances, 8, 100231.

Moreno-Bedmar, J.A., Company, M., Bover-Arnal, T., Salas, R., Maurrasse, F.J., Delanoy, G., Grauges, A., Martínez, R., 2010. Lower Aptian ammonite biostratigraphy in the Maestrat Basin (Eastern Iberian Chain, Eastern Spain). A Tethyan transgressive record enhanced by synrift subsidence. Geologica Acta, 8(3), 281-299.

Moreno-Bedmar, J.A., Bover-Arnal, T., Barragán, R., Salas, R., 2012. Uppermost Lower Aptian transgressive records in Mexico and Spain: chronostratigraphic implications for the Tethyan sequences. Terra Nova, 24, 333-338.

Oliver, W.A., 1983. Symbioses of Devonian rugose corals. Memoir of the Association of Australasian Palaeontologists, 1, 261-274.

Ong, L., Holland, K.N., 2010. Bioerosion of coral reefs by two Hawaiian parrotfishes: species, size differences and fishery implications. Marine Biology, 157, 1313-1323.

Richardson, L.L., 1998. Coral diseases: what is really known. Tree, 13, 438-443.

Riding, R., 2002. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth-Science Reviews, 58, 163-231.

Roberts, C.M., 1995. Effects of Fishing on the Ecosystem Structure of Coral Reefs. Conservation Biology, 9, 988-995.

Robertson, R., 1970. Review of the predators and parasites of stony corals, with special reference to symbiotic prosobranch gastropods. Pacific Science, 24, 43-54.

Rotjan, R.D., Lewis, S.M., 2008. Impact of coral predators on tropical reefs. Marine Ecology Progress Series, 367, 73-91.

Salamon, K., Kołodziej, B., Löser, H., 2021. Diverse nature of ubiquitous microborings in Cenomanian corals (Saxonian Cretaceous Basin, Germany). Cretaceous Research, 126, 104888, 1-12.

Salamon, K., Kołodziej, B., Radtke, G., Schnick, H.H., Golubic, S., 2022. Microborings in Jurassic scleractinians: a glimpse into the ancient coral skeleton microbiome. Coral Reefs, 41, 863-867.

Salas, R., 1987. El Malm i el Cretaci inferior entre el Massís de Garraf i la Serra d'Espadà. Anàlisi de Conca. PhD Thesis. Barcelona, Universitat de Barcelona, 541pp. Website: http://hdl.handle.net/10803/669675

Salas, R., Casas, A., 1993. Mesozoic extensional tectonics, stratigraphy, and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics, 228, 33-55.

Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Meléndez, A., Alonso, A., 2001. Evolution of the Mesozoic Central Iberian Rift System and its Cainozoic inversion (Iberian Chain). In: Ziegler, P.A., Cavazza, W., Roberston, A.H.F., Crasquin-Soleau, S. (eds.). Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins, 186. Paris, Mémoires du Muséum National d'Histoire Naturelle, 145-186.

Salas, R., García-Senz, J., Guimerà, J., Bover-Arnal, T., 2010. Opening of the Atlantic and development of the Iberian intraplate rift basins during the late Jurassic-early Cretaceous. In: Pena Dos Reis, R., Pimentel, N. (eds.). Rediscovering the Atlantic: New Ideas for An Old Sea. Lisbon 2010, II Central & north Atlantic Conjugate Margins Conference, Extended Abstracts, 3, 245-248. ISBN: 978-989-96923-1-2

Sammarco, P.W., Risk, M.J., 1990. Large-scale patterns in internal bioerosion of Porites: cross continental shelf trends on the Great Barrier Reef. Marine Ecology Progress Series, 59, 145-156.

Sanders, D., Baron-Szabo, R.C., 2005. Scleractinian assemblages under sediment input: their characteristics and relation to the nutrient input concept. Palaeogeography, Palaeoclimatology, Palaeoecology, 216, 139-181.

Santos, A., Mayoral, E., Gudveig Baarli, B., Da Silva, C.M., Cachão, M., Johnson, M.E., 2012. Symbiotic association of a Pyrgomatid barnacle with a coral from a volcanic Middle Miocene shoreline (Porto Santo, Madeira Archipielago, Portugal). Palaeontology, 55, 173-182.

Scoffin, T.P., Bradshaw, C., 2000. The taphonomic significance of endoliths in dead-versus live-coral skeletons. Palaios, 15, 248-254.

Simón, J.L., 2004. Superposed buckle folding in the eastern Iberian Chain, Spain. Journal of Structural Geology, 26, 1447-1464.

Sutherland, K.P., Porter, J.W., Torres, C., 2004. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Marine Ecology Progress Series, 266, 273-302.

Tapanila, L., 2005. Palaeoecology and diversity of endosymbionts in Palaeozoic marine invertebrates: Trace fossil evidence. Lethaia, 38, 89-99.

Tapanila, L., 2006. Macroborings and bioclaustrations in a Late Devonian reef above the Alamo Impact Breccia, Nevada, USA. Ichnos, 13, 129-134.

Tapanila, L., Copper, P., 2002. Endolithic trace fossils in Ordovician-Silurian corals and stromatoporoids, Anticosti Island, eastern Canada. Acta Geologica Hispanica, 37(1), 15-20.

Tapanila, L., Holmer, L.E., 2006. Endosymbiosis in Ordovician–Silurian corals and stromatoporoids: a new lingulid and its trace from eastern Canada. Journal of Paleontology, 80, 750-759.

Tapanila, L., Ekdale, A.A., 2007. Early History of Symbiosis in Living Substrates: Trace-Fossil Evidence from the Marine Record. In: Miller, W. (ed.). Trace Fossils. Concepts, Problems, Prospects. Amsterdam, Elsevier, 345-355. DOI: https://doi.org/10.1016/B978-044452949-7/50145-5

Vennin, E., Aurell, M., 2001. Stratigraphie sequentielle de l'Aptien du sous-basin de Galvé (Province de Teruel, NE de l'Espagne). Bulletin de la Société Géologique de France, 172, 397-410.

Vogel, K., 1993. Bioeroders in fossil reefs. Facies, 28, 109-113.

Webb, G.E., Yancey, T.E., 2010. Skeletal repair of extreme damage in rugose corals, Pella Formation (Mississippian, Iowa, USA). Palaeoworld, 19, 325-332.

Weber, M., de Beer, D., Lott, C., Polerecky, L., Kohls, K., Abed, R.M.M., Ferdelman, T.G., Fabricius, K.E., 2012. Mechanisms of damage to corals exposed to sedimentation. Proceedings of the National Academy of Science, 109, E1558-E1567.

Wielgus, J., Glassom, D., Chadwick, N.E., 2006. Patterns of polychaete worm infestation of stony corals in the northern Red Sea and relationships to water chemistry. Bulletin of Marine Science, 78, 377-388.

Wilson, B.R., 1979. A revision of Queensland Lithophagine mussels (Bivalvia, Mytilidae, Lithophaginae). Records of the Australian Museum, 32, 435-489.

Wong, K.J.H., Tsao, Y.-F., Qiu, J.-W., Chan, B.K.K., 2023. Diversity of coral-associated pit crabs (Crustacea: Decapoda: Cryptochiridae) from Hong Kong, with description of two new species of Lithoscaptus A. Milne-Edwards, 1862. Frontiers in Marine Science, 9, 1003321, 1-34.

Work, T.M., Rameyer, R.A., 2005. Characterizing lesions in corals from American Samoa. Coral Reefs, 24, 384-390.

Work, T.M., Aeby, G.S., 2006. Systematically describing gross lesions in corals. Diseases of Aquatic Organisms, 70, 155-160.

Work, T.M., Aeby, G.S., Coles, S.L., 2008. Distribution and morphology of growth anomalies in Acropora from the Indo-Pacific. Diseases of Aquatic Organisms, 78, 255-264.

Work, T.M., Aeby, G.S., 2010. Wound repair in Montipora capitata. Journal of Invertebrate Pathology, 105, 116-119.

Yap, F.-C., Chen, H.-N, Chan, B.K.K., 2023. Host specificity and adaptive evolution in settlement behaviour of coral-associated barnacle larvae (Cirripedia: Pyrgomatidae). Scientific Reports, 13, 9668.

Zande van der, R.M., Achlatis, M., Bender-Champ, D., Kubicek, A., Dove, S., Hoegh-Guldberg, O., 2020. Paradise lost: End-of-century warming and acidification under business-as-usual emissions have severe consequences for symbiotic corals. Global Change Biology, 26, 2203-2219.

Downloads

Published

2024-11-19

Issue

Section

Carbonate successions from Iberia and the Caribbean - Homage to Ramon Salas

Most read articles by the same author(s)