Variations in chemistry of macerals as refl ected by micro-scale analysis of a Spanish coal

Authors

  • M. MASTALERZ Indiana Geological Survey, Indiana University611 North Walnut Grove Ave., Bloomington, Indiana, 47405-2208, United States. Phone: 1-812-855-9416.
  • J.C. HOWER University of Kentucky Center for Applied Energy Research 2540 Research Park Drive, Lexington, Kentucky 40511, United States.
  • D.N. TAULBEE University of Kentucky Center for Applied Energy Research 2540 Research Park Drive, Lexington, Kentucky 40511, United States.

DOI:

https://doi.org/10.1344/105.000002054

Keywords:

Lignite. Macerals. Elemental composition. Functional groups.

Abstract

An Oligocene lignite (Ebro Basin, Spain) and its density fractions were analyzed petrographically and with microscale techniques (electron microprobe and micro-FTIR) to gain insight into differences between individual macerals of low rank high-sulfur coal. The density of the alginite-dominated fraction is below 1.26g/cm3, and that of the huminite-dominated fraction is above 1.38g/cm3. Densities within 1.26-1.38g/cm3 represent mixtures of liptinite and huminite macerals. With regard to elemental composition, alginite has the highest carbon content (75.6% on average) and the lowest oxygen content (6.1% on average). Corpohuminite is characterized by the lowest carbon content (62.3% on average) and the highest oxygen content (21.5% on average). Nitrogen contents for corpohuminite and ulminite (~1%) are similar, but are signifi cantly lower in alginite (0.2% on average). Sulfur content is highest in alginite (13.4% on average), followed by corpohuminite (9.8%) and ulminite (7.7%). Functional group analysis documents large differences between macerals of the huminite and liptinite group, but also indicates differences between individual macerals within both the huminite and liptinite group. These differences are most notable in aromaticity, degree of aromatic ring condensations, and hydrocarbon potential.

References

Arenas, C., Luzón, A., Pardo, G., 1999. El Terciaro de Los Monegros: Registro de evolución ambiental en una Cuenca cerrada, In: Melic, A., Blasco-Zumeta, J. (eds.). Manifiesto cientifico por Los Monegros. Boletín de la Sociedad Entomológica Aragonesa (SEA), 24, 51-62.

Bustin, R.M., Mastalerz, M., Wilks, K.R., 1993. Direct determination of carbon, oxygen and nitrogen in coal using the electron microprobe. Fuel, 72, 181-185.

Cabrera, L., Saez, A., 1987. Coal deposition in carbonate-rich shallow lacustrine systems: The Calaf and Mequinenza sequences (Oligocene, eastern Ebro basin, NE Spain. Journal of the Geological Society, 144, 451-461.

Cabrera, L., Cabrera, M., Gorchs, R., De Las Heras, F.X.C., 2002. Lacustrine basin dynamics and organosulphur compound origin in a carbonate-rich lacustrine system (late Oligocene Mequinenza formation, SE Ebro basin, NE Spain). Sedimentary Geology, 148, 289-317.

Chou, C.L., 2012. Sulfur in coals: A review of geochemistry and origins. International Journal of Coal Geology, 100, 1-13.

Drobniak, A., Mastalerz, M., 2006. Chemical evolution of Miocene wood: Example from the Belchatow brown coal deposit, central Poland. International Journal of Coal Geology, 66, 157-178.

Dyrkacz, G.R., Bloomquist, C.A.A., Horwitz, E.P., 1981. Laboratory scale separation of coal macerals. Separation Science and Technology, 16, 1571-1588.

Dyrkacz, G.R., Bloomquist, C.A.A., Solomon, P.R., 1984. Fourier transform infrared study of high-purity maceral types. Fuel, 63, 536-542.

Dyrkacz, G.R., Bloomquist, C.A.A., Ruscic, L., 1991. An investigation of the vitrinite maceral group in microlithotypes using density gradient separation methods. Energy and Fuels, 5, 155-163.

Gurba, L.W., Ward, C.R., 2000. Elemental composition of coal macerals in relation to vitrinite refl ectance, Gunnedah Basin, Australia, as determined by electron microprobe analysis. International Journal of Coal Geology, 44, 127-149.

Hower, J.C., Taulbee, D.N., Rimmer, S.M., and Morrell, L.G., 1994. Petrographic and geochemical anatomy of lithotypes from the Blue Gem coal bed, southeastern Kentucky. Energy Fuels, 8, 719-728.

Kister, J., Guiliano, M., Largeau, C., Derenne, S., Casadevall, E., 1990. Characterization of chemical structure, degree of maturation and oil potential of Torbanites (type I kerogens) by quantitative FT-i.r. spectroscopy. Fuel, 69, 1356-1361.

Li, Z., Ward, C.R., Gurba, L.W., 2007. Occurrence of nonmineral inorganic elements in low-rank coal macerals as shown by electron microprobe element mapping techniques. International Journal of Coal Geology, 70, 137-149.

Li, Z., Fredericks, P.M., Ward, C.R., Rintoul, L., 2010. Chemical functionalities of high and low sulfur Australian coals: A case study using micro attenuated total refl ectance – Fourier transform infrared (ATR-FTIR) spectrometry. Organic Geochemistry, 41, 554-559.

Lin, R., Ritz, G.P., 1993. Studying individual macerals using i.r. microspectroscopy, and implications on oil versus gas/condensate proneness and “low-rank” generation. Organic Geochemistry, 20, 695-706.

Mastalerz, M., Bustin, R.M., 1993. Variation in maceral chemistry within and between coals of varying rank: an electronic microprobe and micro-Fourier transform infra-red investigation. Journal of Microscopy, 171, 153-166.

Mastalerz, M., Bustin, R.M., 1996. Application of refl ectance microFourier Transform infrared analysis to the study of coal macerals: an example from the Late Jurassic to Early Cretaceous coals of the Mist Mountain Formation, British Columbia, Canada. International Journal of Coal Geology, 32, 55-67.

Mastalerz, M., Gurba, L.W., 2001. Determination of nitrogen in coal macerals using electron microprobe techniques – experimental procedure. International Journal of Coal Geology, 47, 23-30

Mastalerz, M., Schimmelmann, A., Lis, G., Drobniak, A., Stankiewicz, A., 2012. Infl uence of maceral compositions on geochemical characteristics of immature shale kerogen: Insights from density fraction analysis. International Journal of Coal Geology, 103, 60-69.

Painter, P.C., Starsinic, M., Coleman, M.M., 1985. Determination of functional groups in coal by Fourier transform interferometry. In: Ferraro, J.R., Basile, L.J. (eds.). Fourier Transform Infrared Spectroscopy. New York, Academic Press, 169-240.

Querol, X., Cabrera, L., Pickel, W., López-Soler, A., Hagemann, H. W., Fernández-Turiel, J.L., 1996. Geological controls on the coal quality of the Mequinenza subbituminous coal deposit, northeast Spain. International Journal of Coal Geology, 29, 67-91.

Rimmer, S.M., Rowe, H.D., Taulbee, D.N., Hower, J.C., 2006. Infl uence of maceral content on δ13C and δ15N in a Middle Pennsylvanian coal. Chemical Geology, 225, 77-90.

Robl, T.L., Taulbee, D.N., Barron, L.S., Jones, W.C., 1987. Petrologic chemistry of a Devonian type II kerogen. Energy Fuels, 1, 507-513.

Stankiewicz, B.A., Kruge, M.A., Mastalerz, M., 1996. A study of constituent macerals of Miocene and Eocene coals from Indonesia: implications for the origin of aliphatic-rich vitrinite and resinite. Organic Geochemistry, 24, 531-545.

Stankiewicz, B.A., Mastalerz, M., Kruge, M.A., van Bergen, P.F., Sadowska, A., 1997. A comparative study of modern and fossil cone scales and seeds of conifers: a geochemical approach. New Phytologist, 153, 375-393.

Wagner, M., 1996. Brunatny węgiel bitumiczny ze złóż Turów i Belchatów w swietle badań petrografi czno-chemicznych i sedymentologicznych. PAN Oddzial Krakow Prace Geologiczne, 143, 1-107.

Wang, S.H., Griffi ths, P.R., 1985. Resolution enhancement of diffuse refl ectance i.r. spectra of coals by Fourier selfdeconvolution. 1. C-H stretching and bending modes. Fuel, 64, 229-236.

Ward, C.R., Li, Z., Gurba, L.W., 2005. Variations in coal maceral chemistry with rank advance in the German Creek and Moranbah Coal Measures of the Bowen Basin, Australia, using electron microprobe techniques. International Journal of Coal Geology, 63, 117-129.

White, C.M., Collins, L.W., Veloski, G.A., Irdi, G.A., Rothenberger, K.S., Gray, R.J., LaCount, R.B., Kasrai, M., Bancroft, G.M., Brown, J.R., Huggins, F.E., Shah, N., Huffman, G.P., 1994. A study of Mequinenza lignite. Energy Fuels, 8, 155-171.

Downloads

Published

2023-10-26

Issue

Section

Articles