Reverse magnetic anomaly controlled by Permian Igneous rocks in the Iberian Chain (N Spain)

Authors

  • P. CALVIN Dpto. de Ciencias de la Tierra. Universidad de Zaragoza. C/Pedro Cerbuna, 12, 50009 Zaragoza, Spain. Dpto. de Física, Escuela Politécnica Superior, Universidad de Burgos. Avda. Cantabria, s/n, 09006 Burgos, Spain.
  • A.M. CASAS Dpto. de Ciencias de la Tierra. Universidad de Zaragoza. C/Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
  • J. J. VILLALAÍN Dpto. de Física, Escuela Politécnica Superior, Universidad de Burgos. Avda. Cantabria, s/n, 09006 Burgos, Spain.
  • P. TIERZ Dpto. de Ciencias de la Tierra. Universidad de Zaragoza. C/Pedro Cerbuna, 12, 50009 Zaragoza, Spain. Instituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna. Via Donato Creti, 12, 40128 Bologna, Italy.

DOI:

https://doi.org/10.1344/GeologicaActa2014.12.3.2

Keywords:

Reverse magnetic anomaly, Kiaman, Early Permian, 2.5D modelling, Paleomagnetic properties, Iberian Chain.

Abstract

Two important reverse dipolar magnetic anomalies in the Iberian Chain (Spain) are located over Permian igneous rocks. A detailed study of one of them, the Loscos magnetic anomaly, where the geological structure is well constrained, reveals that the source of the anomaly must be a reverse remanent magnetisation carried by igneous rocks, acquired during the period of the Kiaman reverse magnetic superchron. Magnetic and gravimetric detailed survey (with 50 new gravimetric measurements and 8 main magnetic profiles -six of them N–S and the rest E–Wwith a total length of 40km), together with a study of the petrophysical characteristics of igneous materials, data processing and interpretation (upward continuation, 2.5D modelling, etc.) allowed to characterize qualitatively the anomaly and its source. Two overlapping anomalies with different wavelength were identified, indicating the presence of a shallower strongly altered igneous body with heterogeneous magnetic properties, and a deeper, large igneous body, responsible for the main, long-wavelength anomaly.

References

Ardizone, J., Mezcua, J., Socías, I., 1989. Mapa aeromagnético de la España Peninsular. Madrid, Instituto Geográfico Nacional.

Arthaud, F., Matte, P., 1977. Late Paleozoic strike-slip faulting in southern Europe and northern Africa: result of a rift-lateral shear zone between Appalachians and the Urals. Geological Society of American Bulletin, 88, 1305-1320.

Ayarza, P., Martínez-Catalán, J.R., 2007. Potential field constraints on the deep structure of the Lugo gneiss dome (NW Spain). Tectonophysics, 439, 67-87.

Calvín-Ballester, P., Casas-Sainz, A., 2014. Folded Variscan thrust in the Herrera Unit of the Iberian Range (NE Spain). In: Bastida, F., Llana-Fúnez, S., Marcos, A. (eds.). Deformation Structures and Processes within the Continental Crust. London, Geological Society, 394 (Special Publications), 39-52.

Carls, P., 1983. La Zona Asturoccidental-Leonesa en Aragón y el Macizo del Ebro como prolongación del Macizo Cantábrico. Instituto Geológico y Minero de España, 3, 11-32.

Carrancho, A., Villalaín, J.J., 2011. Different mechanisms of magnetization recorded in experimental fires: archaeomagnetic implications. Earth and Planetary Science Letters, 312, 176-187.

Casas, A., Keary, P., Rivero, L., Adam, C.R., 1997. Gravity anomaly map of the Pyrenean region and a comparison of the deep structure of the western and eastern Pyrenees. Earth and Planetary Science Lettters, 150, 65-78.

Conte, J.C., Gascón, F., Lago, M., Carls, P., 1987. Materiales stephano‒pérmicos en la fosa de Fombuena (provincia de Zaragoza). Boletín Geológico y Minero, XCVIII-IV, 460-470.

Cortés-Gracia, A.L., Casas-Sainz, A.M., 1996. Deformación alpina de zócalo y cobertera en el borde norte de la Cordillera Ibérica (Cubeta de Azuara-Sierra de Herrera). Revista de la Sociedad Geológica de España, 9, 51-66.

De Vicente, G., Vegas, R., Muñoz-Martín, A., Van Wees, J.D., Casas-Sainz, A., Sopeña, A., Sánchez-Moya, Y., Arche, A., López-Gómez, J., Olaiz, A. Fernández-Lozano, J., 2009. Oblique strain partitioning and transpression on an inverted rift: The Castilian Branch of the Iberian Chain. Tectonophysics, 470, 224-242.

Del Río, P., Casas, A., Villalaín, J.J., Mochales, T., Soto, R., Oliva-Urcía., B., 2013. Interpretation of gravimetric and magnetic anomalies in the Cameros Basin (North Spain): combination of deep and shallow sources. Studia Geophysica et Geodetica, 57, 442-459.

Gibbons, W., Moreno, T., 2002. The geology of Spain. London, Geological Society, 650pp.

Gómez-Ortiz, D., Tejero-López, R., Babin-Vich, R., RivasPonce, A., 2005. Crustal density structure in the Spanish Central System derived from gravity data analysis (Central Spain). Tectonophysics, 403, 131-149.

Gozalo, R., Liñan, E., 1988. Los materiales hercínicos de la Cordillera Ibérica en el contexto del Macizo Ibérico. Estudios geológicos, 44, 399-404.

Gradstein, F.M., Ogg, J.G., 2004. Geologic Time Scale 2004 - why, how, and where next! Lethaia, 37, 175-181.

Hammer, S., 1939. Terrain corrections for gravimeter stations. Geophysics, 4, 184-94.

Hernando, S., Schott, J.J., Thuizat, R., Montigny, R., 1980. Age des andésites et des sédiments interstratifiés de la région d’Atienza (Espagne): Etude stratigraphique, géochronologique et paléomagnétique. Sciences Géologiques Bulletin, 33, 119-128.

Socías, I., Mezcua, J., 2002. Anomalías Magnéticas de la Península Ibérica. Instituto Geográfico Nacional, Spain, 1 map.

Hinze, W.J., Aiken, C., Brozena, J., Coakley, B., Dater, D., Flanagan, G., Forsberg, R., Hidenbrand, T., Keller, R., Kellogg, J., Kucks, R., Li, X., Mainville, A., Morin, R., Pilkington, M., Plouff, D., Ravat, D., Roman, D., UrritiaFucugauchi, J., Véronneau, M., Webring, M., Winester, D., 2005. New standards for reducing gravity data: The North American gravity database. Geophysics, 50, J25-J32.

Irving, E., Parry, L.G., 1963. The Magnetism of Some Permian Rocks from New South Wales. Geophysical Journal, 7, 395-411.

Kristjansson, L., Jonsson, G., 2007. Paleomagnetism and magnetic anomalies in Iceland. Journal of Geodynamics, 43, 30-54.

LaFehr, T.R., 1991. Standardization in gravity reduction. Geophysics, 56, 1170-1178.

Lago, M., Pocoví, A., Zachmann, D., Arranz, E., Carls, P., Torres, J.A., Vaquer, R., 1991. Comparación preliminar de las manifestaciones magmáticas, calco-alcalinas y stephaniense‒pérmicas, de la Cadena Ibérica. Cuadernos do Laboratorio Xeolóxico de Laxe, 16, 95-107.

Lago, M., Arranz, E., Pocoví, A., Galé, C., Gil-Imaz, A., 2004. Lower Permian magmatism of the Iberian Chain, Central Spain, and its relationship to extensional tectonics. In: Davies, G., Heeremans, M., Larsen, B., Neumann, E., Timmerman, M., Wilson, M. (eds.). Permo‒Carboniferous Magmatism and Rifting in Europe. London, Geological Society, 223 (Special Publications), 465-491.

Lago, M., Gil, A., Arranz, E., Galé, C., Pocoví, A., 2005. Magmatism in the intracratonic Central Iberian basins during the Permian: Palaeonvironmental consequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 229, 83-103,

Lopez-Ciriano, A., Yuste-Oliete, A., Fernández-Nieto, C., 1997. Aspectos estructurales y mineralógicos de los filones polimetálicos de Loscos (norte de Teruel, Cadena Ibérica Oriental). Boletín de la Sociedad Española de Mineralogía, 20, 89-114.

Louro, V.H.A., Mantovani, M.S.M., 2012. 3D inversion and modeling of magnetic and gravimetric data characterizing the geophysical anomaly source in Pratinha I in the southeast of Brazil. Journal of Applied Geophysics, 80, 110-120.

Moritz, H., 1980, Geodetic Reference System 1980. Journal of Geodesy, 54, 395-405.

Ortiz-Alemán, C., Urrutia-Fucugauchi, J., 2010. Aeromagnetic anomaly modeling of central zone structure and magnetic sources in the Chicxulub crater. Physics of the Earth and Planetary Interiors, 179, 127-138.

Osete, M.L., Rey, D., Villalaín, J.J., Juárez, M.T., 1997. The Late Carboniferous to Late Triassic segment of the apparent polar wander path of Iberia. Geologie en Mijbouw, 76, 105-119.

Pedreira, D., Pulgar, J.A., Gallart, J., Torné, M., 2007. Threedimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian Mountains. Journal of Geophysical Research, 112, B12405.

Ribeiro, V.B., Louro, V.H.A., Mantovani, M.S.M., 2013. 3D inversion of magnetic data of grouped anomalies- Study applied to São José intrusions in Mato Grosso, Brazil. Journal of Applied Geophysics, 93, 67-76.

Rybakov, M., Goldshmidt, V., Hall, J.K., Ben-Avraham, Z., Lazar, M., 2011. New insights into the sources of magnetic anomalies in the Levant. Russian Geology and Geophysics, 52, 377-397.

Salas, R., Casas, A., 1993. Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics, 228, 33-35.

Santolaria, P., Casas, A.M., Soto, R., Casas, A., 2012. Análisis de las anomalías gravimétricas de la terminación suroccidental de la Unidad Surpirenaica Central. Geotemas, 13, 445-448.

Urrutia-Fucugauchi, J., Trigo-Huesca, A., Pérez-Cruz, L., 2012. Magnetic links among lava flows, tuffs and the underground plumbing System in a monogenetic volcano, derived from magnetic and paleomagnetic studies. Physics of the Earth and Planetary Interiors, 212, 10-18.

Van der Voo, R., 1967. The rotation of Spain: paleomagnetic evidence from the Spanish Meseta. Palaeogeography, Palaeoclimatology, Palaeoecology, 3, 393-416.

Vera, J.A., 2004. Geología de España. Madrid, Sociadad Geológica de España-Instituto Geológico y Minero de España, 884pp.

Whitney, D.L., Evans, B., 2010. Abbreviations for names of rockforming minerals. American Mineralogist, 95, 185-187.

Downloads

Published

2014-07-31

Issue

Section

Articles