Geometry and kinematics of the Baza Fault (central Betic Cordillera, South Spain): insights into its seismic potential

Authors

  • I. Medina-Cascales University de Alicante 03690, San Vicente del Raspeig, Alicante, Spain. https://orcid.org/0000-0002-9287-2425
  • I. Martin-Rojas University de Alicante 03690, San Vicente del Raspeig, Alicante, Spain.
  • F.J. García-Tortosa University of Jaen Campus Las Lagunillas, 23071 Jaén, Spain.
  • J.A. Peláez University of Jaen Campus Las Lagunillas, 23071 Jaén, Spain.
  • P. Alfaro University de Alicante 03690, San Vicente del Raspeig, Alicante, Spain.

DOI:

https://doi.org/10.1344/GeologicaActa2020.18.11

Keywords:

Normal fault, Active tectonics, Fault geometry, Seismogenic characterization

Abstract

The geometry and kinematics of active faults have a significant impact on their seismic potential. In this work, a structural characterization of the active Baza Fault (central Betic Cordillera, southern Spain) combining surface and subsurface data is presented. Two sectors are defined based on their surface geometry: a northern sector striking N–S to NNW–SSE with a narrow damage zone and a southern sector striking NW–SE with a wide damage zone. A kinematic analysis shows pure normal fault kinematics along most of the fault. Geometric differences between the northern and southern sectors are caused by i) a heterogeneous basement controlling the fault geometry at depth and in the cover; ii) different orientations of the Baza Fault in the basement with respect to the regional extension direction and iii) interaction with other active faults. We use this structural characterization to analyse the segmentation of the Baza Fault. According to segmentation criteria, the entire Baza Fault should be considered a single fault seismogenic segment. Consequently, the seismic potential of the fault is defined for a complete rupture. Magnitude for the Mmax event is calculated using several scale relationships, obtaining values ranging between Mw 6.6 and Mw 7.1. Recurrence times range between approximately 2,000 and 2,200 years for Mmax events and between 5,300 and 5,400 years for palaeo-events. A geodetic scenario modelled for an Mmax event of Mw 6.7 shows permanent vertical displacements of more than 0.40m and an overall WSW–ENE extension during entire ruptures of the Baza Fault.

Author Biography

I. Medina-Cascales, University de Alicante 03690, San Vicente del Raspeig, Alicante, Spain.

PhD Student, Departamento de Ciencias de la Tierra y el Medio Ambiente

References

Abaimov, S.G., Turcotte, D.L., Shchervakov, R., Rundle, J.B., Yakovlev, G., Goltz, C., Newman, W.I., 2008. Earthquakes: Recurrence and Interoccurrence Times. Pure and Applied Geophysics, 165, 777-795. DOI: 10.1007/s00024-008-0331-y Agustí, J., Oms, O., Remacha, E., 2001. Long Plio-Pleistocene terrestrial record of climate change and cammal turnover in

southern Spain. Quaternary Research, 56(3), 411-418. DOI: https://doi.org/10.1006/qres.2001.2269

Alfaro, P., Delgado, J., Sanz de Galdeano, C., Galindo- Zaldívar, J., García-Tortosa, F.J., López-Garrido, A.C., López-Casado, C., Marín-Lechado, A., Gil, A., Borque, M.J., 2008. The Baza Fault: a major active extensional fault in the central Betic Cordillera (south Spain). International Journal of Earth Sciences, 97, 1353-1365. DOI: https://doi.org/10.1007/s00531-007-0213-z

Alfaro, P., Sánchez-Alzola, A., Martin-Rojas, I., García-Tortosa, F.J., Galindo-Zaldívar, J., Avilés, M., López Garrido, A.C., Sanz de Galdeano, C., Ruano, P., Martínez, F., Pedrera, A., Lacy, M.C., Borque, M.J., Medina-Cascales, I., Gil, A.J., in press. Geodetic fault slip rates of active faults in the Baza sub-basin (SE Spain). Insights for seismic hazard assessment. Journal of Geodynamics.

Azéma, J., Foucault, A., Foucarde, E., García-Hernández, M., González-Donoso, J.M., Linares, D., López-Garrido, A.C., Rivas, P., Vera, J.A., 1979. Las microfacies del Jurásico y el Cretácico de las Zonas Externas de las Cordilleras Béticas. Publicaciones de. La Universidad de Granda, 83pp.

Bense, V.F., Person, M.A., 2006. Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water

Resources Research, 42(5), W05421. DOI: https://doi.org/10.1029/2005WR004480

Boncio, P., Lavecchia, G., Pace, B., 2004. Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: The case of central Apennines (Italy). Journal of Seismology, 8, 407-425. DOI: https://doi.org/10.1023/B:JOSE.0000038449.78801.05

Bott, M.H.P., 1959. The mechanics of oblique slip faulting. Geological Magazine, 96(2), 110-117. DOI: https://doi.org/10.1017/S0016756800059987

Calvache, M.L., Viseras, C., 1997. Long-term control mechanisms of stream piracy processes in southeast Spain. Earth Surface Processes and Landforms, 22(2), 93-105. DOI: https://doi.org/10.1002/(SICI)1096-9837(199702)22:2%3C93::AIDESP673%3E3.0.CO;2-W

Castro, J., Martin-Rojas, I., Medina-Cascales, I., García-Tortosa, F.J., Alfaro, P., Insua-Arévalo, J.M., 2018. Active faulting in the central betic Cordillera (Spain): palaeoseismological constraint of the surface-rupturing history of the Baza Fault (central betic Cordillera, Iberian Peninsula). Tectonophysics, 736, 15-30. DOI: https://doi.org/10.1016/j.tecto.2018.04.010

Chartier, T., Scotti, O., Lyon-Caen, H., 2019. SHERIFS: OpenSource Code for Computing Earthquake Rates in Fault Systems and Constructing Hazard Models. Seismological Research Letters, 90(4), 1678-1688. DOI: https://doi.org/10.1785/0220180332

Childs, C., Manzocchi, T., Walsh, J.J., Bonson, C.G., Nicol, A., Schöpfer, M.P.J., 2009. A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology, 31(2), 117-127. DOI: https://doi.org/10.1016/j.jsg.2008.08.009

Cowie, P.A., Roberts, G.P., Bull, J.M., Visini, F., 2012. Relationships between fault geometry, slip rate variability and earthquake recurrence in extensional settings. Geophysical Journal International, 189(1), 143-160. DOI: https://doi.org/10.1111/j.1365-246X.2012.05378.x

Crone, A.J., Haller, K.M., 1991. Segmentation and the coseismic behavior of Basin and Range normal faults: examples from

east-central Idaho and southwestern Montana, U.S.A. Journal of Structural Geology, 13(2), 151-164. DOI: https://doi.org/10.1016/0191-8141(91)90063-O

Delgado, F., 1978. Los Alpujarrides en Sierra de Baza (Cordilleras Béticas, España). PhD Thesis. University of Granada. 483pp.

De Martini, P.M., Hessami, K., Pantosti, D., D’Addezio, G., Alinaghi, H., Ghafory-Ashtiani, M., 1998. A geologic contribution to the evaluation of the seismic potential of the Kahrizak fault (Tehran, Iran). Tectonophysics, 287(1-4), 187-199. DOI: https://doi.org/10.1016/S0040-1951(98)80068-1

DeMets, C., Gordon, R.G., Argus, D.F., 2010. Geologically current plate motions. Geophysical Journal International, 181(1), 1-80. DOI: https://doi.org/10.1111/j.1365-246X.2009.04491.x

Deng, C., Gawthorpe, R.L., Finch, E., Fossen, H., 2017. Influence of a pre-existing basement weakness on normal fault growth during oblique extension: Insights from discrete element modeling. Journal of Structural Geology, 105, 44-61. DOI:

https://doi.org/10.1016/j.jsg.2017.11.005

Díaz-Hernández, J.L., Julià, R., 2006. Geochronological position of badlands and geomorphological patterns in the GuadixBaza basin (SE Spain). Quaternary Research, 65(3), 467-477. DOI: https://doi.org/10.1016/j.yqres.2006.01.009

Fairley, J.P., 2009. Modeling fluid flow in a heterogeneous, faultcontrolled hydrothermal system. Geofluids, 9(2), 153-166.

DOI: https://doi.org/10.1111/j.1468-8123.2008.00236.x

Ferril., D.A., Morris, A.P., McGinnis, R.N., Smart, K.J., Wigginton, S.S., Hill, N.J., 2017. Mechanical stratigraphy and normal faulting. Journal of Structural Geology, 94, 275-302. DOI: https://doi.org/10.1016/j.jsg.2016.11.010

Field, E.H., Johnson, D.D., Dolan, J.F., 1999. A mutually consistent seismic-hazard source model for southern California. Bulletin of the Seismological Society of America, 89(3), 559-578.

Field, E.H., Biasi, G.P., Bird, P., Dawson, T.E., Felzer, K.R., Jackson, D.D., Johnson, K.M., Jordan, T.H., Madden, C., Michael, A. J., Milner, K.R., Page, M.T., Parsons, T., Powers, P.M., Shaw, B.E., Thatcher, W.R., Weldon, R.J., Zeng, Y., 2015. Long-term time-dependent probabilities for the third Uniform California Earthquake Rupture Forecast (UCERF3). Bulletin of the Seismological Society of America, 105(2A), 511-543. DOI: https://doi.org/10.1785/0120140093

Folch, A., Mas-Pla, J., 2008. Hydrogeological interactions between fault zones and alluvial aquifers in regional flow systems. Hydrological Processes, 22(17), 3476-3487. DOI: https://doi.org/10.1002/hyp.6956

Fossen, H., Rotevatn, A., 2016. Fault linkage and relay structures in extensional settings—A review. Earth-Science Reviews, 154, 14-28. DOI: https://doi.org/10.1016/j.earscirev.2015.11.014

Galindo-Zaldívar, J., González-Lodeiro, F., Jabaloy, A., 1989. Progressive extensional shear structures in a detachment contact in the Western Sierra Nevada (Betic Cordilleras, Spain). Geodinamica Acta, 3(1), 73-85. DOI: https://doi.org/10.1080/09853111.1989.11105175

Galindo-Zaldívar, J., González-Lodeiro, F., Jabaloy, A., 1993. Stress and palaeostress in the Betic-Rif cordilleras (Miocene to the present). Tectonophysics, 227(1-4), 105-126. DOI: https://doi.org/10.1016/0040-1951(93)90090-7

Galindo-Zaldívar, J., Jabaloy, A., González-Lodeiro, F., Aldaya, F., 1997. Crustal structure of the central sector of the Betic

Cordillera (SE Spain). Tectonics, 16(1), 18-37. DOI: https://doi.org/10.1029/96TC02359

Galindo-Zaldívar, J., Jabaloy, A., Serrano, I., Morales, J., GonzálezLodeiro, F., Torcal, F., 1999. Recent and present-day stresses

in the Granada Basin (Betic Cordilleras): Example of a late Miocene-present-day extensional basin in a convergent plate boundary. Tectonics, 18(4), 686-702. DOI: https://doi.org/10.1029/1999TC900016

Galindo-Zaldívar, J., Gil, A.J., Sanz de Galdeano, C., Lacy, M.C., García-Armenteros, J.A., Ruano, P., Ruiz, A.M., MartínezMartos, M., Alfaro, P., 2015. Active shallow extension in central and eastern Betic Cordillera from CGPS data. Tectonophysics, 663, 290-301. DOI: https://doi.org/10.1016/j.tecto.2015.08.035

García-Aguilar, J.M., Martín, J.M., 2000. Late Neogene to recent continental history and evolution of the Guadix-Baza basin

(SE Spain). Revista de la Sociedad Geológica de España, 13(1), 65-77.

García-Aguilar, J.M., Palmqvist, P., 2011. A model of lacustrine sedimentation for the Early Pleistocene deposits of Guadix-Baza basin (southeast Spain). Quaternary International, 243(1), 3-15. DOI: https://doi.org/10.1016/j.quaint.2011.02.008

García-Dueñas, V., Balanyá, J.C., Martínez-Martínez, J.M., 1992. Miocene extensional detachments in the outcropping basement of the northern Alboran Basin (Betics) and their tectonic implications. Geo-Marine Letters, 12, 88-95. DOI:

https://doi.org/10.1007/BF02084917

García-García, F., Fernández, J., Viseras, C., Soria, J.M., 2006. Architecture and sedimentary facies evolution in a delta stack controlled by fault growth (Betic Cordillera, southern Spain, late Tortonian). Sedimentary Geology, 185(1-2), 79-92. DOI: https://doi.org/10.1016/j.sedgeo.2005.10.010

García-Hernández, M., López-Garrido, A.C., Rivas, P., Sanz de Galdeano, C., Vera, J.A., 1980. Mesozoic palaeogeographic evolution of the External Zones of the Betic Cordillera. Geologie en Mijnbouw, 59(2), 155-168. ISSN: 0016-7746

García-Tortosa, F.J., Sanz de Galdeano, C., Alfaro, P., GalindoZaldívar, J., Peláez, J.A., 2007. La falla y los pliegues de Galera. In: Sanz de Galdeano, C., Peláez, J.A. (eds.). La cuenca de Guadix-Baza: estructura, tectónica activa, sismicidad, geomorfología y dataciones existentes. Universidad de Granada, 141-153.

García Tortosa, F.J., Alfaro, P., Galindo Zaldívar, J., Gibert, L., López Garrido, A.C., Sanz de Galdeano, C., Ureña, M., 2008.

Geomorphologic evidence of the active Baza fault (Betic Cordillera, South Spain). Geomorphology, 97(3-4), 374-391. DOI: https://doi.org/10.1016/j.geomorph.2007.08.007

García-Tortosa, F.J., Alfaro, P., Galindo Zaldívar, J., Sanz de Galdeano, C., 2011. Glacis geometry as a geomorphic marker of recent tectonics: the Guadix-Baza Basin (South Spain). Geomorphology, 125(4), 517-529. DOI: https://doi.org/10.1016/j.geomorph.2010.10.021

Giba, M., Walsh, J.J., Nicol, A., 2012. Segmentation and growth of an obliquely reactivated normal fault. Journal of Structural

Geology, 39, 253-267. DOI: https://doi.org/10.1016/j.jsg.2012.01.004

Gibert, L., Ortí, F., Rosell, L., 2007a. Plio-Pleistocene lacustrine evaporites of the Baza Basin (Betic Chain, SE Spain). Sedimentary Geology, 200(1-2), 89-116. DOI: https://doi.org/10.1016/j.sedgeo.2007.03.003

Gibert, L., Scott, G., Martin, R., Gibert, J., 2007b. The Early to Middle Pleistocene boundary in the Baza Basin (Spain). Quaternary Science Reviews, 26(17-18), 2067-2089. DOI: https://doi.org/10.1016/j.quascirev.2007.06.012

Gil, A.J., Rodríguez-Caderot, G., Lacy, M.C., Ruiz, A.M., Sanz de Galdeano, C., Alfaro, P., 2002. Establishment of a NonPermanent GPS Network to Monitor the Recent NE-SW Deformation in the Granada Basin (Betic Cordillera, Southern

Spain). First Results from a non-permanent GPS network. Studia Geophysica et Geodaetica, 46, 395-409. DOI: https://doi.org/10.1023/A:1019530716324

Goy, J.L., Zazo, C., Dabrio, C.J., Hoyos, M., Civis, J., 1989. Geomorfología y evolución dinámica del sector suroriental de la cuenca de Guadix–Baza (área Baza–Caniles). Trabajos sobre el Neógeno-Cuaternario, 11, 97-111. ISSN: 0210-5217

Grünthal, G., 1998. European Macroseismic Scale 1998. Luxembourg: Conseil de l’Europe, Cahiers du Centre Europèen de Gèodynamique et de Seismologie, 15, 100pp.

Guerra-Merchán, A., 1992. Origen y relleno sedimentario de la cuenca neógena del corredor del Almanzora y áreas limítrofes (Cordillera Bética). PhD Thesis. University of Granada, 237pp.

Guerra-Merchán, A., Ruíz-Bustos, A., Martín-Penela, A.J., 1991. Geología y fauna de los yacimientos de Colorado 1, Colorado

, Aljibe 2 y Aljibe 3 (Cuenca de Guadix-Baza, Cordilleras Béticas). Geogaceta, 9, 99-102.

Guerra-Merchán, A., Ruíz-Bustos, A., 1992. Nuevos datos bioestratigráficos de los materiales continentales del sector suroriental de la Cuenca de Guadix-Baza. El yacimiento de Caniles. Geogaceta, 11, 76-78. ISSN: 0213683X

Haberland, C., Giber, L., José Jurado, M., Stiller, M., BaumannWilke, M., Scott, G., Mertz, D.F., 2017. Architecture and tectono-stratigraphic evolution of the intramontane Baza Basin (Bétics, SE-Spain): Constraints from seismic imaging. Tectonophysics, 709, 69-84. DOI: https://doi.org/10.1016/j.tecto.2017.03.022

Herraiz, M., De Vicente, G., Lindo-Ñaurapi, R., Giner, J., Simón, J.L., González-Casado, J., Vadillo, O., Rodriguez-Pascua, M.A.,

Cicuéndez, J.L., Casas, A., Cabañas, L., Rincón, P., Cortés, A. L., Ramírez Lucini, M., 2000. The recent (upper Miocene to

Quaternary) and present tectonic stress distributions in the Iberian Peninsula. Tectonics, 19(4), 762-786. DOI: https://doi.org/10.1029/2000TC900006

Iezzi, F., Mildon, Z., Walker, J.F., Roberts, G., Goodwall, H., Maxwell., W., Robertson., J., 2018. Coseismic Throw Variation Across Along-Strike Bends on Active Normal Faults: Implications for Displacement Versus Length Scaling of Earthquake Ruptures. Journal of Geophysical Research: Solid Earth, 123, 9817-9841. DOI: https://doi.org/10.1029/2018JB016732

IGN-UPM, 2013. Actualización de mapas de peligrosidad sísmica de España 2012. Madrid, Centro Nacional de Información

Geográfica, 267pp. ISBN: 978-84-416-2685-0

Jackson, C.A.L., Rotevatn, A., 2013. 3D seismic analysis of the structure and evolution of a salt-influenced normal fault zone:

A test of competing fault growth models. Journal of Structural Geology, 54, 215-234. DOI: https://doi.org/10.1016/j.jsg.2013.06.012

Janecke, S.U., Vandenburg, C.J., Blankenau, J.J., 1998. Geometry, mechanisms and significance of extensional folds from examples in the Rocky Mountain Basin and Range province, U.S.A. Journal of Structural Geology, 20(7), 841-856. DOI: https://doi.org/10.1016/S0191-8141(98)00016-9

Janecke, S.U., Dorsey, R.J., Forand, D., Steely, A.N., Kirby, S.M., Lutz, A.T., Housen, B.A., Belgarde, B., Langenheim, V.E., Rittenour, T.M., 2010. High geologic slip rates since Early Pleistocene initiation of the San Jacinto and San Felipe fault

zones in the San Andreas Fault System: Southern California, USA. The Geological Society of America Special Paper, 475, 48pp.

Kobayashi, T., Tobita, M., Koarai, M., Okatani, T., Suzuki, A., Noguchi, Y., Yamanaka, M., Miyahara, B., 2012. InSARderived crustal deformation and fault models of normal faulting earthquake (Mj 7.0) in the Fukushima-Hamadori area. Earth Planets Space, 64, 1209-1221. DOI: https://doi.org/10.5047/eps.2012.08.015

Kurt, H., Sorlien, C.C., Seeber, L., Steckler, M.S., Shillington, D.J., Cifci, G., Cormier, M.H., Dessa, J.X., Atgin, O., Dondurur, D., Demirbag, E., Okay, S., Imren, C., Gurcay, S., Carton, H., 2013. Steady late Quaternary slip rate on the Cinarcik section of the North Anatolian fault near Istanbul, Turkey. Geophysical Research Letters, 40(17), 1-5. DOI: https://doi.org/10.1002/grl.50882

Legg, M.R., Goldfinger, C., Kamerling, M.J., Chaytor, J.D., Einstein, D.E., 2007. Morphology, structure and evolution of California Continental Borderland restraining bends. In: Cunningham, W.D., Mann, P. (eds.). Tectonics of StrikeSlip Restraining and Releasing Bends. London, Geological Society, 290 (Special Publications), 143-168. DOI: https://doi.org/10.1144/SP290.3

Leonard, M., 2010. Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement,

and moment release. Bulletin of the Seismological Society of America, 100(5A), 1971-1988. DOI: https://doi.org/10.1785/0120090189

Manzocchi, T., Childs, C., Walsh, J.J., 2010. Faults and fault properties in hydrocarbon flow models. Geofluids, 10(1-2), 94-

DOI: https://doi.org/10.1111/j.1468-8123.2010.00283.x

Marcén, M., Román-Berdiel, T., Casas-Sainz, A.M., Soto, R., Oliva-Urcia, B., Castro, J., 2019. Strain variations in a seismogenic normal fault (Baza Sub-basin, Betic Chain): Insights from magnetic fabrics (AMS). Tectonophysics, 765, 64-82. DOI: https://doi.org/10.1016/j.tecto.2019.05.014

Martín-Algarra, A., Andreo, B., Balany, J.C., Estévez, A., LópezGarrido, A.C., O’Dogherty, L., García-Dueñas, V., 2004. Unidades Frontales de las Zonas Internas. In: Vera, J.A. (ed.). Geología de España. Madrid, Sociedad Geológica de EspañaInstituto Geológico y Minero de España (SGE-IGME),, 396-401.

Martin-Rojas, I., Somma, R., Delgado, F., Estévez, A., Iannace, A., Perrone, V., Zamparelli, V., 2009. Triassic continental rifting

of Pangaea: direct evidence from the Alpujarride carbonates, Betic Cordillera, SE Spain. Journal of the Geological Society, 166(3), 447-458. DOI: https://doi.org/10.1144/0016-76492008-091

Martin-Rojas, I., Somma, R., Delgado, F., Estévez, A., Iannace, A., Zamparelli, V., 2012. The Triassic platform of the Gador-Turon unit (Alpujarride complex, Betic Cordillera, southeast Spain): climate versus tectonic factors controlling platform architecture. Facies, 58, 297-323. DOI: https://doi.org/10.1007/s10347-011-0275-z

Martínez-Martínez, J.M., Booth-Rea, G., Azañón, J.M., Torcal, F., 2006. Active transfer fault zone linking a segmented extensional system (Betics, southern Spain): Insight into heterogeneous extension driven by edge delamination. Tectonophysics, 422(1-4), 159-173. DOI: https://doi.org/10.1016/j.tecto.2006.06.001

Martínez-Solares, J.M., Mezcua, J., 2002. Catálogo sísmico de la Península Ibérica (880 AC-1900). Madrid (Spain), Instituto

Geográfico Nacional (IGN), Monografía nº 18, 254pp.

Matthews, M.V., Ellsworth, W.L., Reasenberg, P.A., 2002. A Brownian model for recurrent earthquakes. Bulletin of the Seismological Society of America, 92(6), 2233-2250. DOI: https://doi.org/10.1785/0120010267

Medina-Cascales, I., Koch, L., Cardozo, N., Martin-Rojas, I., Alfaro, P., García-Tortosa, F.J., 2019. 3D geometry and architecture of a normal fault zone in poorly lithified sediments: A trench study on a strand of the Baza Fault, central Betic Cordillera, south Spain. Journal of Structural Geology, 121, 25-45. DOI: https://doi.org/10.1016/j.jsg.2019.02.003

Mildon, Z.K., Toda, S., Faure Walker, J.P., Roberts, G.P., 2016. Evaluating models of Coulomb stress transfer: Is variable fault

geometry important? Geophysical Research Letters, 43(24), 12407-12414. DOI: https://doi.org/10.1002/2016GL071128

Mouslopoulou, V., Nicol, A., Little, T.A., Walsh, J.J., 2007. Displacement transfer between intersecting regional strikeslip and extensional fault systems. Journal of Structural Geology, 29(1), 100-116. DOI: https://doi.org/10.1016/j.jsg.2006.08.002

Nocquet, J-M., 2012. Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics, 579, 220-242. DOI: https://doi.org/10.1016/j.tecto.2012.03.037

Olivera Serrano, C., 1995. La actividad sísmica en el reino de Granada (1487-1531): Estudio histórico y documentos. Madrid, Editorial Grafos 112pp.

Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of

America, 75(4), 1135-1154.

Okada, Y., 1992. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018-1040.

Orozco, M., Alonso-Chaves, F.M., 2002. Estructuras de colapso extensional en el Dominio de Alborán. In: Orozco, M. (ed.).

Región de La Axarquía-Sierra Tejeda (provincias de Málaga y Granada). XIV Reunión de la Comisión de Tectónica de la

Sociedad Geológica de España, Guía de Campo, Granada, 120pp. ISBN: 84-607-5712-9

Pace, B., Boncio, P., Lavecchia, G., 2002. The 1984 Abruzzo earthquake (Italy): an example of seismogenic process controlled by interaction between differently oriented synkinematic faults. Tectonophysics, 350(3), 237-254. DOI: https://doi.org/10.1016/S0040-1951(02)00118-X

ace, B., Visini, F., Peruzza, L., 2016. FiSH: MATLAB tools to turn fault data into Seismic-Hazard Models. Seismological Research Letters, 87(2A), 374-386. DOI: https://doi.org/10.1785/0220150189

Patel, J.K., Kapadia, C.H., Owen, D.B., 1976. Handbook of Statistical Distributions. New York, Marcel Dekker, 302pp.

Peacock, D.C.P., Anderson, M.W., 2012. The scaling of pull-aparts and implications for fluid flow in areas with strike-slip faults. Journal of Petroleum Geology, 35(4), 389-400. DOI: https://doi.org/10.1111/j.1747-5457.2012.00537.x

Peacock, D.C.P., Nixon, C.W., Rotevatn, A., Sanderson, D.J., Zuluaga, L.F., 2016. Glossary of fault and other fracture networks. Journal of Structural Geology, 92, 12-29. DOI: https://doi.org/10.1016/j.jsg.2016.09.008

Peacock, D.C.P., Nixon, C.W., Rotevatn, A., Sanderson, D.J., Zuluaga, L.F., 2017a. Interacting faults. Journal of Structural Geology, 97, 1-22. DOI: https://doi.org/10.1016/j.jsg.2017.02.008

Peacock, D.C.P., Dimmen, V., Rotevatn, A., Sanderson, D.J., 2017b. A broader classification of damage zones. Journal of Structural Geology, 102, 179-192. DOI: https://doi.org/10.1016/j.jsg.2017.08.004

Pedrera, A., 2008. Structure and tectonic evolution of the Almanzora corridor and the western Huércal-Overa basin (Eastern Betic Cordillera). PhD Thesis. University of Granada, 201pp.

Pedrera, A., Galindo-Zaldívar, J., Sanz de Galdeano, C., LópezGarrido, A.C., 2006. Superposición de fallas y paleoesfuerzos en

el Corredor del Almanzora desde el Tortoniense a la actualidad (Cordilleras Béticas). Geogaceta, 39, 59-62. ISSN: 0213683X

Pedrera, A., Galindo-Zaldívar, J., Marín-Lechado, C., GarcíaTortosa, F.J., Ruano, P., López Garrido, A.C., Azañón, J.M., Peláez, J.A., Giaconia, F., 2012. Recent and active faults and folds in the central-eastern Internal Zones of the Betic Cordillera. Journal of Iberian Geology, 38(1), 191-208. DOI: https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39213

Peña, J., 1979. La depresión de Guadix–Baza: Estratigrafía del Plioceno–Pleistoceno. PhD Thesis. University of Granada, 179pp.

Peña, J.A., 1985. La depresión de Guadix-Baza. Estudios Geológicos, 41(1-2), 33-46. DOI: https://doi.org/10.3989/egeol.85411-2688

Peña, J.A., Rodríguez-Fernández, J., Ruiz-Bustos, A., 1977. El yacimiento de vertebrados de cortes de Baza I (Depresión de

Guadix-Baza). Nota preliminar. Acta Geológica Hispánica, XII, 42-45.

Pérez-Peña, V., Azañón, J.M., Azor, A., Tuccimei, P., Della Seta, M., Soligo, M., 2009. Quaternary landscape evolution and

erosion rates for an intramontane Neogene basin (Guadix–Baza basin, SE Spain). Geomorphology, 106(3-4), 206-218. DOI: https://doi.org/10.1016/j.geomorph.2008.10.018

Pérez-Peña, A., Martín-Dávila, J., Gárate, J., Berrocoso, M., Buforn, E., 2010. Velocity field and tectonic strain in Southern

Spain and surrounding areas derived from GPS episodic measurements. Journal of Geodynamics, 49(3-4), 232-240. DOI: https://doi.org/10.1016/j.jog.2010.01.015

Rice, J.R., Cocco, M., 2007. Seismic fault rheology and earthquake dynamics. In: Handy, M.R., Hirth, G., Hovious, N. (eds.). The Dynamics of Fault Zones. Cambridge, MIT Press, 99-137.

Rockwell, T., Ragona, D., Seitz, G., Langridge, R., Aksoy, M.E., Ucarkus, G., Ferry, M., Meltzner, A.J., Klinger, Y., Meghraoui, M., Satir, D., Barka, A., Akbalik, B., 2009. Palaeoseismology of the North Anatolian Fault near the Marmara Sea: implications for fault segmentation and seismic hazard. In: Reicherter, K., Michetti, A.M., Silva, P.G. (eds.). Palaeoseismology: Historical and Prehistorical Records of Earthquake Ground Effects for Seismic Hazard Assessment. London, Geological Society, 316 (Special Publications), 31-54. DOI: https://doi.org/10.1144/SP316.3

Ros-Montoya, S., Martínez-Navarro, B., Espigares, M.P., GuerraMerchán, A., García-Aguilar, J.M., Piñero, P., RodríguezRueda, A., Agustí, J., Oms, O., Palmqvist, P., 2017. A new Ruscinian site in Europe: Baza-1 (Baza basin, Andalusia, Spain). Comptes Rendus Palevol, 16(7), 746-761. DOI: https://doi.org/10.1016/j.crpv.2017.05.005

Ruiz, A.M., Ferhat, G., Alfaro, P., Sanz de Galdeano, C., Lacy, M.C., Rodríguez-Caderot, G., Gil, A.J., 2003. Geodetic Measurement of Crustal Deformation on NW-SE Faults of The Betic Cordillera, Southern Spain, 1999-2001. Journal of

Geodynamics, 35(3), 259-272. DOI: https://doi.org/10.1016/S0264-3707(02)00134-5

Saltzer, S.D., Polland, D.D., 1992. Distinct element modelling of structures formed in sedimentary overburden by extensional reactivation of basement normal faults. Tectonics, 11(1), 165-174. DOI: https://doi.org/10.1029/91TC02462

Sanz de Galdeano, C., Alfaro, P., 2004. Tectonic significance of the present relief of the Betic Cordillera. Geomorphology,

(3-4), 175-190. DOI: https://doi.org/10.1016/j.geomorph.2004.04.002

Sanz de Galdeano, C., García-Tortosa, F.J., Peláez, J.A., Alfaro, P., Azañón, J.M., Galindo-Zaldívar, J., López-Casado, C., LópezGarrido, A.C., Rodríguez-Fernández, J., Ruano, P., 2012. Main active faults in the Granada and Guadix-Baza Basins (Betic Cordillera). Journal of Iberian Geology, 38(1), 209-223. DOI: 10.5209/rev_JIGE.2012.v38.n1.39215

Sanz de Galdeano, C., Azañón, J.M., Cabral, J., Ruano, P., Alfaro, P., Canora, C., Ferrater, M., García-Tortosa, F., Mayordomo,

J., Gràcia, E., Insua-Arévalo, J.M., Jiménez, A., Lacan, P., Marín-Lechado, C., Martín-Banda, R., Martín-González, F., Martinez-Diaz, J.J., Martin-Rojas, I., Masana, E., Simón, J.L., 2020. Active Faults in Iberia. In: Quesada, C., Oliveira, J. (eds.). The Geology of Iberia: A Geodynamic Approach. Cham, Regional Geology Reviews, Springer, 33-75.

Scholz, C.H., 2002. The mechanics of Earthquakes and Faulting. Cambridge, Cambridge University Press, 487pp.

Scott, G.R., Gibert, L., 2009. The oldest hand-axes in Europe. Nature, 461, 82-85. DOI: https://doi.org/10.1038/nature08214

Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., Balde, P., Gasperini, P., 2007. Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophysical Journal International, 169(3), 1180-1200. DOI: https://doi.org/10.1111/j.1365-246X.2007.03367.x

Soria, F.J., López-Garrido, A.C., Vera, J.A., 1987. Análisis estratigráfico y sedimentológico de los depósitos neógenocuaternarios en el sector de Orce (depresión de Guadix–Baza). Paleontologia i Evolució, Memòria Especial, 1, 11-34.

Sparacino, F., Palano, M., Peláez, J.A., Fernández, J., 2020. Geodetic Deformation versus Seismic Crustal Moment-Rates: Insights from the Ibero-Maghrebian Region. Remote Sensing, 12(6), 952. DOI: https://doi.org/10.3390/rs12060952

Stich, D., Benito Martín, J., Morales, J., 2007. Deformación sísmica y asísmica en la zona Béticas-Rif-Alborán. Revista de la Sociedad Geológica de España, 20(3-4), 311-319.

Stirling, M., Rhoades, D., Berryman, K., 2002. Comparison of Earthquake Scaling Relations Derived from Data of the Instrumental and Preinstrumental Era. Bulletin of the Seismological Society of America, 92(2), 812-830. DOI: https://doi.org/10.1785/0120000221

Sun, J., Shen, Z., Xu, X., Bürgman, R., 2008. Synthetic normal faulting of the 9 January 2008 Nima (Tibet) earthquake from conventional and along-track SAR interferometry. Geophysical Research Letters, 35, L22308. DOI: https://doi.org/10.1029/2008GL035691

Toda, S., Stein, R.S., Sevilgen, V., Lin, J., 2011 Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide. U.S. Geological Survey Open-File Report, 2011-1060,

pp. Available at: https://pubs.usgs.gov/of/2011/1060/ Last accessed: 30/01/2020

Vera, J.A., 1970a. Facies del Plioceno de la Depresión de GuadixBaza. Cuadernos Geológicos de la Universidad de Granada,

, 23-25.

Vera, J.A., 1970b. Estudio estratigráfico de la Depresión de Guadix-Baza. Boletín del Instituto Geológico y Minero de España, 81, 429-462.

Vera, J.A., Rodriguez, J., Guerra, A., Viseras, C., 1994. La Cuenca de Guadix-Baza. Documents et Travaux de l’ Institut géologique Albert de Lapparent, 14, 1-17.

Viseras, C.A., 1991. Estratigrafía y sedimentología del relleno aluvial de la cuenca de Guadix (Cordilleras Béticas). PhD Thesis. University of Granada, 327pp.

Wells, D.L., Coppersmith K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture

area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002.

Wesnousky, S.G., 1986. Earthquakes, quaternary faults, and seismic hazard in California. Journal of Geophysical Research: Solid Earth, 91(B12), 12587-12631. DOI: https://doi.org/10.1029/JB091iB12p12587

Wesnousky, S.G., 2006. Predicting the endpoints of earthquake ruptures. Nature, 444, 358-360. DOI: https://doi.org/10.1038/nature05275

Wesnousky, S.G., 2008. Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. Bulletin of the Seismological Society of America, 98(4), 1609-1632. DOI: https://doi.org/10.1785/0120070111

Whipp, P.S., Jackson, C.A-L., Gawthorpe, R.L., Dreyer, T., Quinn, D., 2013. Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea. Basin Research, 26(4), 523-549. DOI: https://doi.org/10.1111/bre.12050

Wibberley, C.A.J., Gonzalez-Dunia, J., Billon, O., 2017. Faults as barriers or channels to production-related flow: Insights from case studies. Petroleum Geoscience, 23(1), 134-147. DOI: https://doi.org/10.1144/petgeo2016-057

Downloads

Published

2020-08-26

Issue

Section

Articles