Relationship of F-Be mineralization to granites and syenites at the Ermakovka deposit (Western Transbaikalia)


  • G.S. Ripp Geological Institute Siberian Branch of the Russian Academy of Sciences st. Sakh’yanovoi 6a, 670047 Ulan-Ude, Russia
  • I.A. Izbrodin Geological Institute Siberian Branch of the Russian Academy of Sciences st. Sakh’yanovoi 6a, 670047 Ulan-Ude, Russia
  • M.O. Rampilov Geological Institute Siberian Branch of the Russian Academy of Sciences st. Sakh’yanovoi 6a, 670047 Ulan-Ude, Russia
  • A.A. Tomilenko Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences pr. Akademika Koptyuga 3, 630090 Novosibirsk, Russia
  • E.A. Lastochkin Geological Institute Siberian Branch of the Russian Academy of Sciences st. Sakh’yanovoi 6a, 670047 Ulan-Ude, Russia
  • V.F. Posokhov Geological Institute Siberian Branch of the Russian Academy of Sciences st. Sakh’yanovoi 6a, 670047 Ulan-Ude, Russia



F-Be ores, Granites, Isotopic composition, Geochronology


The paper presents the mineralogical and geochemical characteristics of two groups of hydrothermal rocks and their relation with subalkaline granites of the Ermakovskoe deposit. The first group includes fluorite-phenakite-bertrandite ore bodies, occurring outside the granite massif. The second group is presented by silicification bodies with sulfates, phosphates, kaolinite, muscovite and hematite. It bears REE (rare earth elements) mineralization (monazite, florencite, xenotime) and occurs within the massif. Our research included isotopic analyses of Sr, Nd and O, studies of trace, including rare-earth element compositions and age determination (U-Pb) of apatite from F-Be ores. Geochemical and isotopic studies are not according with relation between F-Be ores and granites. This is proven by the absence of Be-mineralization in granites and schlieren pegmatites, and a sharp difference in composition of their fluid phases. A reductive fluid specification forming F-Be ores (containing CH4, H2, N2, CO2 and H2S), contrasts sharply with fluid specification of granites. The granites are characterized by high oxygen fugacity, due to ferrous iron, sulfates and phosphates. Besides isotopic composition of oxygen in quartz (7.4 and 5.1‰ δ18О V-SMOW respectively), initial Sr ratios (0.7056-0.7065 and 0.707-0.709 respectively) and REE compositions are different.


Amelin, Y., Zaitsev, A.N., 2002. Precise geochronology of phoscorites and carbonatites: The critical role of U-series disequilibrium in age interpretations. Geochimica et Cosmochimica Acta, 66(13), 2399-2419.

Baker, J., Peate, D., Waight, T., Meyzen, C., 2004. Pb isotopic analysis of standards and samples using a 207Pb-204Pb double

spike and thallium to correct for mass bias with a doublefocusing MC-ICP-MS. Chemical Geology, 211(3-4), 275-303.

Barfod, G.H., Krogstad, E.J., Frei, R., Albarede, F., 2005. Lu-Hf and PbSL geochronology of apatites from Proterozoic terranes: A first look at Lu-Hf isotopic closure in metamorphic apatite. Geochimica et Cosmochimica Acta, 69(7), 1847-1859.

Baumgartner, L.P., Valley, J.W., 2001. Stable isotope transport and contact metamorphic fluid flow. Reviews in Mineralogy and Geochemistry, 43, 415-467.

Beal, K., Lentz, D.R., 2001. Aquamarine beryl from Zealand Station, Canada: a mineralogical and stable isotope study. Journal of geosciences, 55(1), 57-67.

Bowman, J.R., 1998. Stable-isotope systematics of skarn. Lentz, D.R. (ed.). Mineralized Intrusion-Related Skar Systems. Mineralogical association of Canada, short course, 26, 99-145.

Broom-Fendley, S., Heaton, T., Wall, F., Gunn, G., 2016. Tracing the fluid source of heavy REE mineralisation in carbonatites

using a novel method of oxygen-isotope analysis in apatite: the example of Songwe Hill, Malawi. Chemical Geology, 440(15), 275-287.

Coplen, T.B., 1988. Normalization of oxygen and hydrogen data. Chemical Geology, 72(1-2), 293-297.

Chew, D.M., Sylvester, P.J., Tubrett, M.N., 2011. U-Pb and Th-Pb dating of apatite by LA-ICPMS. Chemical Geology, 280(1-2), 200-216.

Damdinova, L.B., Reyf, F.G., 2004. Peculiarities of the formation of diverse veinlet beryllium mineralization at the Ermakovskoe deposit (Western Transbaikalia). Russian Geology Geophysics, 45(8), 979-991.

Damdinova, L.B., Reyf, F.G., 2008. The origin of low-Be quartzfluorite field at the Ermakovskoe high-grade F-Be-ore deposit.

Russian Geology Geophysics, 49(11), 816-826.

Frezzotti, M.L., 2001. Silicate-melt inclusions in magmatic rock: applications to petrology. Lithos, 55(1-4), 273-299.

Johnson, T.M., Ripley, E.M., 1998. Hydrogen and oxygen isotopic systematic of berillium mineralisation Spor Mauntain, Utah. Geological society of America, Abstract with programs, 30, 127.

Kosals, V.A., Dmitrieva, A.N., Arkhipchuk, R.Z., Galchenko, V.I., 1973. Sequence and features of formation of fluoritephenakite-bertrandite mineralization. Russian Geology Geophysics, 14(4), 42-53.

Kupriyanova, I.I., Shpanov, E.P., Galchenko, V.I., 2001. Ermakovka fluorite-beryllium deposit (Western Transbaikalia, Russia) (in Russian). Moscow, VIMS, 310pp.

Lowenstern, J.B., Thompson, J.F.H., 1995. Applications of silicatemelt inclusions to the study of magmatic volatiles, Magmas, Fluids, and Ore Deposits. Mineralogical Association of Canada, Short Course Series, 23, 71-99.

Lykhin, D.A., Kovalenko, V.I., Yarmolyuk, V.V., Kostitsyn, Y.A., Salnikova, E.B., Kotov, A.B., Kovach, V.P., Ripp, G.S., 2001. Ore-bearing magmatism at the Ermakovka beryllium deposit in the Western Transbaikal region: age, magma sources, and relationships to ore mineralization. Geology of Ore Deposits, 43(1), 46-63.

Lykhin, D.A., Kovalenko, V.I., Yarmolyuk, V.V., Kotov, A.B., Kovach, V.P., 2010a. The Yermakovsky deposit, Western Transbaikal region, Russia: isotopic and geochemical parameters and sources of beryllium-bearing granitoids and other rocks. Geology of Ore Deposits, 52(4), 289-301.

Lykhin, D.A., Kovalenko, V.I., Yarmolyuk, V.V., Salnikova, E.B., Kotov, A.B., Anisimova, I.V., Plotkina, Y.V., 2010b. The Yermakovsky Beryllium Deposit, Western Transbaikal Region, Russia: Geochronology of Igneous Rocks. Geology of Ore Deposits, 52(2), 126-152.

Lykhin, D.A., Yarmolyuk, V.V., 2015. West-Transbaikal beryllium province: deposits, ore-bearing magmatism, sources of matter (in Russian). Moscow, GEOS, 1-256.

Meffre, S., Large, R.R., Scott, R., Woodhead, J., Chang, Z., Gilbert, S.E., Danyushevsky, L.V., Maslennikov, V., Hergt, J.M., 2008.

Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia. Geochimica et Cosmochimica Acta, 72(9), 2377-2391.

Novikova, M.I., Shpanov, E.P., Kupriyanova, I.I., 1994. Petrography of the Ermakovskoe beryllium deposit, western Transbaikalia. Petrology, 2(1), 114-127.

Reyf, F.G., Ishkov, Y.M., 1999. Be-bearing sulfate–fluoride brine: a product of residual pegmatite distillation in an alkali granite intrusion, Yermakovka F-Be deposit, Transbaikalia. Geochemistry International, 37(10), 985-999.

Reyf, F.G., 2008. Alkali granite and Be (phenakite-bertrandite) mineralization at the Orot and Yermakovka deposits. Geochemistry International, 46(3), 213-232.

Ripp, G.S., Izbrodin, I.A., Doroshkevich, A.G., Rampilov, M.O., Lastochkin, E.I., Posokhov, V.F., 2016a. Carbonates and sources

of fluids in ores and metasomatites of the Ermakovka fluoritebertrandite-phenakite deposit (Western Transbaikalia). Russian Geology and Geophysics, 57(9), 1288-1297.

Ripp, G.S., Izbrodin, I.A., Lastochkin, E.I., Doroshkevich, A.G., Rampilov, M.O., Posokhov, V.F., 2016b. Isotopic Characteristics

of the Ermakovskoe Fluorite-Bertrandite-Phenakite Deposit (Western Transbaikalia). Geochemistry International, 54(9), 748-764.

Ripp, G.S., Smirnova, O.K., Izbrodin, I.A., Lastochkin, E.I., Rampilov, M.O., Posokhov, V.F. 2018. An isotope study of the Dzhida Mo–W ore field (Western Transbaikalia, Russia). Minerals, 8, 546.

Roedder, E., 1992. Fluid inclusion for evidence immiscibility in magmatic differentiation. Geochimica et Cosmochimica Acta, 56(1), 5-20.

Schoene, B., Bowring, S.A., 2006. U-Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contribution to mineralogy and petrology, 151, 615-630.

Sokol, A.G., Palyanov, Y.N., Tomilenko, A.A., Bul’bak, T.A., Palyanova, G.A., 2017. Carbon and nitrogen speciation in nitrogen-rich C-O-H-N fluids at 5.5-7.8 GPa. Earth and Planetary Science Letters, 460, 234-243.

Sun, S., McDonough, W.F., 1989. Chemical and isotopic systematica of oceanic basalts: implications for mantle composition and processes. Magmatism in the ocean basins, 42, 313-345.

Taylor, H.P., Frechen, J., Degens, E.T., 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alno district, Sweden. Geochimica et cosmochimica acta, 31, 407-430.

Taylor, B.E., O’Neil, J.R., 1977. Stable isotope studies of metasomatic Ca-Fe-Al-Si-skarns and associated metamorphic and igneous rocks Osgood mountains, Nevada. Contribution to Mineralogy and Petrology, 63(1), 1-50.

Tomilenko, A.A., Chepurov, A.I., Sonin, V.M., Bul’bak, T.A., Zhimulev, E.I., Chepurov, A.A., Timina, T.Y., Pokhilenko, N.P., 2015. The synthesis of methane and heavier hydrocarbons in the system graphite-iron-serpentine at 2 and 4 GPa and 1200ºC. High temperatures-high pressures, 44(6), 451-465.

Valley, J.W., 1986. Stable isotope geochemistry of metamorphic rocks. Reviews in Mineralogy and Geochemistry, 16, 445-489.

Wood, S.A., 1992. Theoretical prediction of speciation and solubility of berillium in hydrothermal solutions to 300ºC at

saturated vapor pressure: Application to bertrandite/phenakite deposits. Ore Geology Reviwes, 7(4), 249-278.