Relationship of F-Be mineralization to granites and syenites at the Ermakovka deposit (Western Transbaikalia)
DOI:
https://doi.org/10.1344/GeologicaActa2020.18.2Keywords:
F-Be ores, Granites, Isotopic composition, GeochronologyAbstract
The paper presents the mineralogical and geochemical characteristics of two groups of hydrothermal rocks and their relation with subalkaline granites of the Ermakovskoe deposit. The first group includes fluorite-phenakite-bertrandite ore bodies, occurring outside the granite massif. The second group is presented by silicification bodies with sulfates, phosphates, kaolinite, muscovite and hematite. It bears REE (rare earth elements) mineralization (monazite, florencite, xenotime) and occurs within the massif. Our research included isotopic analyses of Sr, Nd and O, studies of trace, including rare-earth element compositions and age determination (U-Pb) of apatite from F-Be ores. Geochemical and isotopic studies are not according with relation between F-Be ores and granites. This is proven by the absence of Be-mineralization in granites and schlieren pegmatites, and a sharp difference in composition of their fluid phases. A reductive fluid specification forming F-Be ores (containing CH4, H2, N2, CO2 and H2S), contrasts sharply with fluid specification of granites. The granites are characterized by high oxygen fugacity, due to ferrous iron, sulfates and phosphates. Besides isotopic composition of oxygen in quartz (7.4 and 5.1‰ δ18О V-SMOW respectively), initial Sr ratios (0.7056-0.7065 and 0.707-0.709 respectively) and REE compositions are different.
References
Amelin, Y., Zaitsev, A.N., 2002. Precise geochronology of phoscorites and carbonatites: The critical role of U-series disequilibrium in age interpretations. Geochimica et Cosmochimica Acta, 66(13), 2399-2419.
Baker, J., Peate, D., Waight, T., Meyzen, C., 2004. Pb isotopic analysis of standards and samples using a 207Pb-204Pb double
spike and thallium to correct for mass bias with a doublefocusing MC-ICP-MS. Chemical Geology, 211(3-4), 275-303.
Barfod, G.H., Krogstad, E.J., Frei, R., Albarede, F., 2005. Lu-Hf and PbSL geochronology of apatites from Proterozoic terranes: A first look at Lu-Hf isotopic closure in metamorphic apatite. Geochimica et Cosmochimica Acta, 69(7), 1847-1859.
Baumgartner, L.P., Valley, J.W., 2001. Stable isotope transport and contact metamorphic fluid flow. Reviews in Mineralogy and Geochemistry, 43, 415-467.
Beal, K., Lentz, D.R., 2001. Aquamarine beryl from Zealand Station, Canada: a mineralogical and stable isotope study. Journal of geosciences, 55(1), 57-67.
Bowman, J.R., 1998. Stable-isotope systematics of skarn. Lentz, D.R. (ed.). Mineralized Intrusion-Related Skar Systems. Mineralogical association of Canada, short course, 26, 99-145.
Broom-Fendley, S., Heaton, T., Wall, F., Gunn, G., 2016. Tracing the fluid source of heavy REE mineralisation in carbonatites
using a novel method of oxygen-isotope analysis in apatite: the example of Songwe Hill, Malawi. Chemical Geology, 440(15), 275-287.
Coplen, T.B., 1988. Normalization of oxygen and hydrogen data. Chemical Geology, 72(1-2), 293-297.
Chew, D.M., Sylvester, P.J., Tubrett, M.N., 2011. U-Pb and Th-Pb dating of apatite by LA-ICPMS. Chemical Geology, 280(1-2), 200-216.
Damdinova, L.B., Reyf, F.G., 2004. Peculiarities of the formation of diverse veinlet beryllium mineralization at the Ermakovskoe deposit (Western Transbaikalia). Russian Geology Geophysics, 45(8), 979-991.
Damdinova, L.B., Reyf, F.G., 2008. The origin of low-Be quartzfluorite field at the Ermakovskoe high-grade F-Be-ore deposit.
Russian Geology Geophysics, 49(11), 816-826.
Frezzotti, M.L., 2001. Silicate-melt inclusions in magmatic rock: applications to petrology. Lithos, 55(1-4), 273-299.
Johnson, T.M., Ripley, E.M., 1998. Hydrogen and oxygen isotopic systematic of berillium mineralisation Spor Mauntain, Utah. Geological society of America, Abstract with programs, 30, 127.
Kosals, V.A., Dmitrieva, A.N., Arkhipchuk, R.Z., Galchenko, V.I., 1973. Sequence and features of formation of fluoritephenakite-bertrandite mineralization. Russian Geology Geophysics, 14(4), 42-53.
Kupriyanova, I.I., Shpanov, E.P., Galchenko, V.I., 2001. Ermakovka fluorite-beryllium deposit (Western Transbaikalia, Russia) (in Russian). Moscow, VIMS, 310pp.
Lowenstern, J.B., Thompson, J.F.H., 1995. Applications of silicatemelt inclusions to the study of magmatic volatiles, Magmas, Fluids, and Ore Deposits. Mineralogical Association of Canada, Short Course Series, 23, 71-99.
Lykhin, D.A., Kovalenko, V.I., Yarmolyuk, V.V., Kostitsyn, Y.A., Salnikova, E.B., Kotov, A.B., Kovach, V.P., Ripp, G.S., 2001. Ore-bearing magmatism at the Ermakovka beryllium deposit in the Western Transbaikal region: age, magma sources, and relationships to ore mineralization. Geology of Ore Deposits, 43(1), 46-63.
Lykhin, D.A., Kovalenko, V.I., Yarmolyuk, V.V., Kotov, A.B., Kovach, V.P., 2010a. The Yermakovsky deposit, Western Transbaikal region, Russia: isotopic and geochemical parameters and sources of beryllium-bearing granitoids and other rocks. Geology of Ore Deposits, 52(4), 289-301.
Lykhin, D.A., Kovalenko, V.I., Yarmolyuk, V.V., Salnikova, E.B., Kotov, A.B., Anisimova, I.V., Plotkina, Y.V., 2010b. The Yermakovsky Beryllium Deposit, Western Transbaikal Region, Russia: Geochronology of Igneous Rocks. Geology of Ore Deposits, 52(2), 126-152.
Lykhin, D.A., Yarmolyuk, V.V., 2015. West-Transbaikal beryllium province: deposits, ore-bearing magmatism, sources of matter (in Russian). Moscow, GEOS, 1-256.
Meffre, S., Large, R.R., Scott, R., Woodhead, J., Chang, Z., Gilbert, S.E., Danyushevsky, L.V., Maslennikov, V., Hergt, J.M., 2008.
Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia. Geochimica et Cosmochimica Acta, 72(9), 2377-2391.
Novikova, M.I., Shpanov, E.P., Kupriyanova, I.I., 1994. Petrography of the Ermakovskoe beryllium deposit, western Transbaikalia. Petrology, 2(1), 114-127.
Reyf, F.G., Ishkov, Y.M., 1999. Be-bearing sulfate–fluoride brine: a product of residual pegmatite distillation in an alkali granite intrusion, Yermakovka F-Be deposit, Transbaikalia. Geochemistry International, 37(10), 985-999.
Reyf, F.G., 2008. Alkali granite and Be (phenakite-bertrandite) mineralization at the Orot and Yermakovka deposits. Geochemistry International, 46(3), 213-232.
Ripp, G.S., Izbrodin, I.A., Doroshkevich, A.G., Rampilov, M.O., Lastochkin, E.I., Posokhov, V.F., 2016a. Carbonates and sources
of fluids in ores and metasomatites of the Ermakovka fluoritebertrandite-phenakite deposit (Western Transbaikalia). Russian Geology and Geophysics, 57(9), 1288-1297.
Ripp, G.S., Izbrodin, I.A., Lastochkin, E.I., Doroshkevich, A.G., Rampilov, M.O., Posokhov, V.F., 2016b. Isotopic Characteristics
of the Ermakovskoe Fluorite-Bertrandite-Phenakite Deposit (Western Transbaikalia). Geochemistry International, 54(9), 748-764.
Ripp, G.S., Smirnova, O.K., Izbrodin, I.A., Lastochkin, E.I., Rampilov, M.O., Posokhov, V.F. 2018. An isotope study of the Dzhida Mo–W ore field (Western Transbaikalia, Russia). Minerals, 8, 546.
Roedder, E., 1992. Fluid inclusion for evidence immiscibility in magmatic differentiation. Geochimica et Cosmochimica Acta, 56(1), 5-20.
Schoene, B., Bowring, S.A., 2006. U-Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contribution to mineralogy and petrology, 151, 615-630.
Sokol, A.G., Palyanov, Y.N., Tomilenko, A.A., Bul’bak, T.A., Palyanova, G.A., 2017. Carbon and nitrogen speciation in nitrogen-rich C-O-H-N fluids at 5.5-7.8 GPa. Earth and Planetary Science Letters, 460, 234-243.
Sun, S., McDonough, W.F., 1989. Chemical and isotopic systematica of oceanic basalts: implications for mantle composition and processes. Magmatism in the ocean basins, 42, 313-345.
Taylor, H.P., Frechen, J., Degens, E.T., 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alno district, Sweden. Geochimica et cosmochimica acta, 31, 407-430.
Taylor, B.E., O’Neil, J.R., 1977. Stable isotope studies of metasomatic Ca-Fe-Al-Si-skarns and associated metamorphic and igneous rocks Osgood mountains, Nevada. Contribution to Mineralogy and Petrology, 63(1), 1-50.
Tomilenko, A.A., Chepurov, A.I., Sonin, V.M., Bul’bak, T.A., Zhimulev, E.I., Chepurov, A.A., Timina, T.Y., Pokhilenko, N.P., 2015. The synthesis of methane and heavier hydrocarbons in the system graphite-iron-serpentine at 2 and 4 GPa and 1200ºC. High temperatures-high pressures, 44(6), 451-465.
Valley, J.W., 1986. Stable isotope geochemistry of metamorphic rocks. Reviews in Mineralogy and Geochemistry, 16, 445-489.
Wood, S.A., 1992. Theoretical prediction of speciation and solubility of berillium in hydrothermal solutions to 300ºC at
saturated vapor pressure: Application to bertrandite/phenakite deposits. Ore Geology Reviwes, 7(4), 249-278.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Geologica Acta
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
Geologica Acta is the property of the UB, GEO3BCN, IDAEA and UAB. Geologica Acta must be cited for any partial or full reproduction. Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows anyone to reproduce and disseminate the content of the journal and even make derivative works crediting authorship and provenance and distributing possible derivative works under the same or an equivalent license.
Author Rights
Authors retain the copyright on their papers and are authorized to post them on their own web pages or institutional repositories. The copyright was retained by the journal from the year 2003 until 2009. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission from Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.