Middle Triassic high-K calc-alkaline effusive and pyroclastic rocks from the Zagorje-Mid-Transdanubian Zone (Mt. Kuna Gora; NW Croatia): mineralogy, petrology, geochemistry and tectonomagmatic affinity

Authors

DOI:

https://doi.org/10.1344/GeologicaActa2021.19.2

Keywords:

Middle Triassic, calc-alkaline effusive and pyroclastic rocks, ensialic volcanic arc, active continental margin, Mt. Kuna Gora, Croatia

Abstract

This study uses mineralogical, petrological, geochemical, and Sr and Nd isotope data along with K-Ar ages to infer the petrogenesis and geodynamic evolution of Middle Triassic high-K calc-alkaline lavas and their associated pyroclastics of Mt. Kuna Gora in NW Croatia. Their analogue mineralogy and bulk-rock geochemistry testify to the coeval origin of both rock types. Sanidine and plagioclase accompanied by inor augite and Ti-bearing magnetite are the major phases found in a matrix of devitrified volcanic glass and plagioclase microlites. Hydrothermal and
diagenetic processes in the pyroclastics originated the formation of chlorite and white mica, and mixed-layer clay minerals, respectively. Petrography reveals the following crystallization order: spinel→clinopyroxene→plagioclase→alkali-feldspar±Fe-Ti oxides. Geochemical and isotopic data suggests that the studied rocks had a complex origin that included the contamination of subduction-generated magmas by lithospheric mantle melts. This presumes an interplay between fertile arc mantle, subducted continental crust, and depleted or ocean island basalts-like mantle. A low degree of crustal contamination stands as a last step in the formation of such “hybrid” magmas. The subducted Paleotethyan oceanic lithosphere went through processes of partial melting at depths of ~45-49km and pressures of ≤1.6GPa and fractionation that produced melts which gave rise to the studied rocks. In the model we are proposing herein such formed partial melts are related to the demise of the northward subduction of the Paleotethys oceanic lithosphere during the Early to Middle Triassic epoch, which is consistent with an active, ensialic mature volcanic arc developing along Laurussian southern active margins.

References

Abbas, H., Michail, M., Cifelli, F., Mattei, M., Gianolla, P., Lustrino, M., Carminati, E., 2018. Emplacement modes of the Ladinian plutonic rocks of the Dolomites: Insights from anisotropy of magnetic susceptibility. Journal of Structural Geology, 113, 42-61.

Aljinović, D., Kolar-Jurkovšek, T., Jurkovšek, B., Hrvatović, H., 2010. Characteristics of some Middle Triassic volcaniclastic rocks in the External Dinarides (Croatia and Bosnia and Herzegovina). In: Horvat, M. (ed.). Abstract Book. 4st Croatian Geological Congress, Šibenik, Croatian Geological Survey, 14-15.

Aničić, B., Jureša, M., 1984. Basic geological map SFRJ 1:100,000. Rogatec sheet (in Croatian). Institut za geološka istraživanja Zagreb, Savezni geološki zavod Beograd.

Arculus, R.J., Powell, R., 1986. Source component mixing in the regions of arc magma generation. Journal of Geophysical Research, 91, 5913-5926.

Avanzinelli, R., Prytulak, J., Skora, S., Heumann, A., Koetsier, G., Elliott, T., 2012. Combined 238U-230Th and 235U-231Pa constraints on the transport of slab-derived material beneath the Mariana Islands. Geochimica Cosmochimica Acta, 95, 308-328.

Bailey, J.C., 1981. Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chemical Geology, 32, 139-154.

Bébien, J., Blanchet, R., Cadet, J.P., Charvet, J., Chorowitz, J., Lapierre, H., Rampnoux, J.P., 1978. Le volcanisme triasique des Dinarides en Yougoslavie: sa place dans l’évolution géotectonique péri-méditerrenéenne. Tectonophysics, 47, 159-176.

Beccaluva, L., Coltorti, M., Saccani, E., Siena, F., Zeda, O., 2005. Triassic magmatism and Jurassic ophiolites at the margins

of the Adria Plate. In: Finetti, I.R. (ed.). Crop Project: Deep Seismic Exploration of the Central Mediterranean and Italy. Elsevier, 28, 607-622.

Berra, F., Angiolini, L., 2014. The evolution of the Tethys region throughout the Phanerozoic: A brief tectonic reconstruction.

In: Marlow, L., Kendall, C., Yose, L. (eds.). Petroleum systems of the Tethyan region. American Association of Petroleum Ggeologists Memoir, 106, 1-27.

Bialas, R.W., Buck, W.R., Qin, R., 2010. How much magma is required to rift a continent? Earth and Planetary Science Letters, 292, 68-78.

Bianchini, G., Natali, C., Shibata, T., Yoshikawa, M., 2018. Basic dykes crosscutting the crystalline basement of Valsugana

(Italy): new evidence of Early Triassic volcanism in the Southern Alps. Tectonics, 37, 2080-93.

Bonadiman, C., Coltorti, M., Siena, F., 1994. Petrogenesis and T-fO2 estimates of Mt. Monzoni complex (Central Dolomites, Southern Alps): a Triassic shoshonotic intrusion in a transcurrent geodynamic setting. European Journal of Mineralogy, 6, 943-966.

Bortolotti, V., Principi, G., 2005. Tethyan ophiolites and Pangea break-up. Island Arc, 14, 442-70.

Bortolotti, V., Chiari, M., Marroni, M., Pandolfi, L., Principi, G., Saccani, E., 2013. The geodynamic evolution of the ophiolites

from Albania and Greece, Dinaric-Hellenic Belt: one, two, or more oceanic basins? International Journal of Earth Sciences, 102, 783-811.

Cameron, B.I., Walker, J.A., Carr, M.J., Patino, L.C., Matias, O., Feigenson, M.D., 2003. Flux versus decompression melting at stratovolcanoes in southeastern Guatemala. Journal of Volcanology and Geothermal Research, 119, 21-50.

Casetta, F., Coltorti, M., Marrocchino, E., 2018. Petrological evolution of the middle Triassic Predazzo intrusive complex, Italian Alps. International Geology Review, 60, 977-997.

Casetta, F., Ickert, R.B., Mark, D.F., Bonadiman, C., Giacomoni, P.P., Ntaflos, T., Coltorti, M., 2019. The alkaline lamprophyres of the Dolomitic Area (Southern Alps, Italy): markers of the Late Triassic change from orogenic-like to anorogenic magmatism. Journal of Petrology, 60, 1263-1298.

Cassinis, G., Cortesogno, L., Gaggero, L., Perotti, C.R., Buzzi, L., 2008. Permian to Triassic geodynamic and magmatic evolution of the Brescian Prealps (eastern Lombardy, Italy). Bollettino della Società Geologica Italiana, 127, 501-518.

Castellarin, A., Lucchini, F., Rossi, P.L., Simboli, G., Bosellini, A., Sommavilla, E., 1980. Middle Triassic magmatism in southern Alps II: a geodynamic model. Rivista Italiana di Paleontologia e Stratigrafia, 85, 3-4.

Castellarin, A., Lucchini, F., Rossi, P.L., Selli, L., Simboli, G., 1988. The Middle Triassic magmatic-tectonic arc developed in the southern Alps. Tectonophysics, 146, 79-89.

Castorina, F., Magganas, A., Masi, U., Kyriakopoulos, K., 2020. Geochemical and Sr-Nd isotopic evidence for petrogenesis and geodynamic setting of Lower-Middle Triassic volcanogenic rocks from central Greece: Implications for the Neotethyan

Pindos ocean. Mineralogy and Petrology, 114, 39-56.

Cathelineau, M., 1988. Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals, 23, 471-485.

Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The Interpretation of Igneous Rocks. London, George Allen and Unwin, 450pp.

Crisci, C.M., Ferrara, G., Mazzuoli, R., Rossi, P.M., 1984. Geochemical and geochronological data on Triassic volcanism in the Southern Alps of Lombardy (Italy): genetic implications. Geologische Rundschau, 73, 279-292.

Csontos, L., Vörös, A., 2004. Mesozoic plate tectonic reconstruction of the Charpatian region. Palaeogeography Palaeoclimatology Palaeoecology, 210, 1-56.

Dana, J.D., Klein, C., Hurlbut, C.S., 1993. Manual of mineralogy. New York, Wiley, 532pp.

Deer, W.A., Howie, R.A., Zussman, J., 1992. An introduction to the rock-forming minerals. Longman Group Limited, 696pp

Elliott, T.R., Plank, T., Zindler, A., White, W., Bourdon, B., 1997. Element transport from slab to volcanic front at the Mariana

arc. Journal of Geophysical Research, 102, 14991-15019.

Elliott, T.R., 2003. Tracers of the slab. In: Eiler, J. (ed.). Inside the subduction factory. Washington DC, Geophysical Monograph, American Geology Union, 138, 23-45.

Gill, J.B., 1981. Orogenic andesites and plate tectonics. BerlinHeidelberg-New York, Springer, 390pp. Golub, Lj., Brajdić, V., 1968. Basalt from Žutica near Krapina (Croatian Zagorje) (in Croatian, with English abstract). Geološki vjesnik, 21, 249-254.

Golub, Lj., Brajdić, V., Šebečić, B., 1969. Eruptive and pyroclastic rocks from Mt. Strahinjščica (Croatan Zagorje) (in Croatian,

with English abstract). Geološki vjesnik, 23, 205-217.

Golub, Lj., Brajdić, V., 1970. Eruptive and pyroclastic rocks from Vudelja and from the Bistrica brook on the northern slopes

of Mt. Ivanščica (Hrvatsko Zagorje–Yugoslavia) (in Croatian, with English abstract). Zbornik radova Rudarsko-geološkonaftnog fakulteta (30. god. rada, 1939-1969), 123-127.

Goričan, Š., Halamić, J., Grgasović, T., Kolar-Jurkovšek, T., 2005. Stratigraphic evolution of Triassic arc-back arc system in

northwestern Croatia. Bulletin de la Société Géologique de France, 176, 3-22.

Gorton, M.P., Shandl, E.S., 2000. From continents to island arcs: A geochemical index of tectonic setting for arc-related and

within-plate felsic to intermediate volcanic rocks. Canadian Mineralogist, 38, 1065-1073.

Graciansky, P-C., Roberts, D.G., Tricart, P., 2011. The Western Alps, from Rift to Passive Margin to Orogenic Belt: An integrated geoscience overview. In: Shroder, J.F. (ed.). Developments in Earth surface processes. Amsterdam, Elsevier, 391pp.

Grimes, C.B., Wooden, J.L., Cheadle, M.J., John, B.E., 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contribution to Mineralogy and Petrology, 170, 46.

Haas, J., Mioč, P., Pamić, J., Tomljenović, B., Árkai, P., BércziMakk, A., Koroknai, B., Kovács, S., R-Felgenhauer, E., 2000. Complex structural pattern of the Alpine-Dinaridic Pannonian triple junction. International Journal of Earth Sciences, 89, 377-389.

Haas, J., Kovács, S., 2001. The Dinaridic-Alpine connection–as seen from Hungary. Acta Geologica Hungarica, 44, 345-362.

Halamić, J., 1998. The lithostratigraphic characterisation of Jurassic and Cretaceous sediments with ophiolite of Mts. Medvednica, Kalnik and Ivanščica (in Croatian, with English abstract). PhD Thesis. University of Zagreb, Zagreb, 184pp.

Hall, A., 1996. Igneous Petrology. London, Longman, 551pp.

Harangi, Sz., Szabó, Cs., Józsa, S., Szoldán, Zs., Árva-Sós, E., Balla, M., Kubovics, I., 1996. Mesozoic igneous suites in Hungary: Implications for genesis and tectonic setting in the northwestern part of Tethys. International Geolological Review, 38, 336-360.

Hart, S., Zindler, A., 1989. Constraints on the nature and development of chemical heterogeneities in the mantle. In: Peltier, W.R. (ed.). Mantle Convection. New York, Gordon and Breach Science Publishers, 216-387.

Hawkesworth, C.J., Herft, J.M., Mcdermott, F., Ellam, R.M., 1991. Destructive margin magmatism and the contributions from

the mantle wedge and subducted crust. Austrian Journal of Earth Sciences, 38, 577-594.

Hawkesworth, C.J., Gallagher, K., Hergt, J.M., Mcdermott, F., 1993. Trace element fractionation processes in the generation

of island arc basalts. In: Cox, K.G., Mckenzie, D.P., White, R.S. (eds.). Melting and melt movement in the Earth. Philosophical

Transactions of Royal Society London, Oxford University Press, A342, 179-191.

Hawkesworth, C., Turner, S., Gallagher, K., Hunter, A., Bradshaw, T., Rogers, N., 1995. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. Journal of Geophysical Research, 100, 10271-10286.

Hawkesworth, C.J., Turner, S.P, Mcdermott, F., Peate, D.W., Van Calsteren, P., 1997. U-Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science, 276, 551-555.

Hey, M.H., 1954. A new review of the chlorites. Mineralogical Magazine, 30, 277-292.

Hildreth, W., Moorbath, S., 1988. Crustal contributions to arc magmatism in the Andes of Central Chile. Contribution to Mineralogy and Petrology, 98, 455-489.

Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219-229.

Hollocher, K., Robinson, P., Walsh, E., Roberts, D., 2012. Geochemistry of amphibolite facies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: a key to correlations and paleotectonic settings. American Journal of Science, 312, 357-416.

Hooper, P.R., Bailey, D.G., McCarley Holder, G.A., 1995, Tertiary calc-alkaline magmatism associated with lithospheric extension in the Pacific Northwest. Journal of Geophysical Research, 100, 10303-10319.

Hövelmann, J., Putnis, A., Geisler, T., Schmidt, B.C., GollaSchindler, U., 2010. The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments. Contribution to Mineralogy and Petrology, 159, 43-59.

Johnson, R.W., Mackenzie, D.E., Smith, I.E.M., 1978. Delayed partial melting of subduction-modified mantle in Papua New

Guinea. Tectonophysics, 46, 197-216.

Jowet, E.C., 1991. Fitting Iron and Magnesium into the Hydrothermal Chlorite Geothermometer. Abstracts of the GAC/MAC/SEG Joint Annual Meeting (Toronto, May 27-29, 1991), 16, A62.

Kaur, P., Chaudhri, N., Hofmann, A.W., 2015. New evidence for two sharp replacement fronts during albitization of granitoids from northern Aravalli orogen, northwest India. International Geology Review, 57, 1660-1685.

Keller, J., 1982. Mediterranean Island arcs. In: Thorpe, R.S. (ed.). In Andesites, Orogenic Andesites and Related Rocks. New

York, John Wiley and Sons, 308-325.

Kinzler, R.J., 1997. Melting of mantle peridotite at pressure approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. Journal of Geophysical Research, 102, 853-874.

Knežević, V., Jovanović, V., Memović, E., Resimović, K., 1998. Triassic magmatic rocks of Yugoslav Dinarides–in Serbia (in Serbian, with English abstract). XIII kongres geologa Jugoslavije, Herceg Novi, Zbornik radova, 3, 61-66.

Kovács, S., 1989. Major events of the tectono-sedimentary evolution of the north Hungarian Paleo-Mesozoic: History of the NW termination of the Late Paleozoic-Early Mesozoic Tethys. In: Segnör, A.M. (ed.). Tectonic evolution of the Tethyan region. London, Mathematic and Phisical Sciences, Klaver Academian Publications, Series C, 259, 93-108.

Kovács, S., 1992. Tethys “western ends” during the late Paleozoic and Triassic and their possible genetic relationships. Acta

Geologica Hungarica, 35, 329-369.

Kovács, S., Sudar, M., Grădinaru, E., Gawlick, H-J., Karamata, S., Haas, J., Péró, C., Gaetani, M., Mello, J,, Polák, M., Aljinović, D., Ogorelec, B., Kolar-Jurkovšek, T., Jurkovšek, B., Buser, S., 2011. Triassic Evolution of the Tectonostratigraphic Units of the Circum-Pannonian Region. Jahrbuch der Geologischen Bundesanstalt, 151, 199-280.

Kranidiotis, P., Maclean, W.H., 1987. Systematics of Chlorite Alteration at the Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec. Economic Geology, 82, 1898-1911.

Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist, 68, 277-279.

Le Bas, M.J., 1962. The role of aluminium in igneous clinopyroxene with relation to their parentage. American Journal of Science, 260, 267-288.

Le Bas, J.M., Le Maitre, R.V., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total

alkali-silica diagram. Journal of Petrology, 27, 745-75.

Lindsley, D.H., 1983. Pyroxene thermometry. American Mineralogist, 68, 477-493.

Lustrino, M., Duggen, S., Rosenberg, C.L., 2011. The centralwestern Mediterranean: anomalous igneous activity in an anomalous collisional tectonic setting. Earth Science Review, 104, 1-40.

Lustrino, M., Abbas, H., Agostini, S., Gaggiati, M., Carminati, E., Gianolla, P., 2019. Origin of Triassic magmatism of the Southern Alps (Italy): constraints from geochemistry and SrNd-Pb isotopic ratios. Gondwana Research, 75, 218-238.

Marci, V., Šćavničar, S., Sijarić, G., 1982. Petrogenesis of the volcanic rocks of Ivanščica Mt. (River Željeznica) (in Croatian, with English summary). X kongres geologa Jugoslavije, Budva, Zbornik radova, 1, 329-335.

Marci, V., Ščavnićar, S., Sijarić, G., 1984. The new data about volcanic rocks of Ivanščica mountain (in Croatian, with English summary). Geološki Vjesnik, 37, 97-104.

Mazza, S.H., Stracke, A., Gill, J.B., Kimura, J-I., Kleine, T., 2020. Tracing dehydration and melting of the subducted slab with

tungsten isotopes in arc lavas. Earth and Planetary Science Letters, 530, 115942.

McCann, T., 2008. The geology of Central Europe, vol. 2: Mesozoic and Cenozoic. London, The Geological Society, 1491pp.

McDonough, W.F., Frey, F.A., 1989. REE in upper mantle rocks. In: Lipin, B., McKay, G.R. (eds.). Geochemistry and mineralogy

of rare earth elements. Chelsea, Michigan, Mineralogical Society of America, 99-145.

McKenzie, D.P., O’Nions, R.K., 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal

of Petrology, 32, 1027-1091.

Millot, G., 1971. Geology of Clays. Weathering, Sedimentology, Geochemistry. Berlin, Springer-Verlag, 429pp.

De Min, A., Velicogna, M., Ziberna, L., Chiaradia, M., Alberti, A., Marzoli, A., 2020. Triassic magmatism in the European Southern Alps as an early phase of Pangea break-up. Geological Magazine, 157, 1800-1822.

Moore, D.M., Reynolds, R.C., 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford, University Press, 2nd edition, 378pp.

Morimoto, N., 1988. Nomenclature of pyroxenes. Schweizerische Mineralogische und Petrographische Mitteilungen, 68, 95-111.

Nave, D.A., Putirka, K.D., 2017. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. American Mineralogist, 102, 777-794.

Neubauer, F., Liu, Y., Cao, S., Yuan, S., 2019. What is the Austroalpine mega-unit and what are the potential relations to Paleotethys Ocean remnants of southeastern Europe? Geologica Carpathica, 70, 16-20.

Nimis, P., 1999. Clinopyroxene geobarometry of magmatic rocks. Part 2: Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contribution to Mineralogy and Petrology, 135, 62-74.

Nimis, P., Ulmer, P., 1998. Clinopyroxene geobarometry of magmatic rocks. Part 1: an expanded structural geobarometer

for anhydrous and hydrous, basic and ultrabasic systems. Contribution to Mineralogy and Petrology, 133, 122-135.

Obenholzner, J.H., 1991. Triassic volcanogenic sediments from the Southern Alps (Italy, Austria, Yugoslavia)–a contribution to the “Pietra verde“ problem. Sedimentary Geology, 74, 147-171.

Ogg, J.G., Ogg, G., Gradstein, F.M., 2016. A concise geological time scale. Amsterdam, Elsevier, 250pp.

Pamić, J., 1984. Triassic magmatism of the Dinarides in Yugoslavia. Tectonophysics, 109, 273-307.

Pamić, J., 1997.Volcanic rocks from the Sava-Drava interfluve and Baranja in the south Pannonian basin (Croatia). Zagreb,

Nafta, 192pp.

Pamić, J., Tomljenović, B., 1998. Basic geological data on the Croatian part of the Mid-Transdanubian Zone as exemplified by Mt. Medvednica located along the Zagreb-Zemplen Fault Zone. Acta Geologica Hungarica, 41, 389-400.

Pamić, J., 2002. The Sava-Vardar zone of the Dinarides and Hellenides versus the Vardar Ocean. Eclogae Geologicae Helvetiae, 9, 99-114.

Pamić, J., Balen, D., 2005. Interaction between Permo-Triassic rifting, magmatism and initiation of the Adriatic-Dinaridic carbonate platform (ADCP). Acta Geologica Hungarica, 48, 181-204.

Parry, W.T., Ballantyne, J.M., Jacobs, D.C., 1984. Geochemistry of hydrothermal sericite from Roosvelt Hot Springs and the

Tintic and Santa Rita porphyry copper systems. Economic Geology, 79, 72-86.

Pearce, J.A., 1975. Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics, 25, 41-67.

Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R.S. (ed.). Andesites.

New York, Wiley, 525-548.

Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J., Norry, M.J. (eds.). Continental basalts and mantle xenoliths. Nantwich UK, Shiva, 230-249.

Pearce, J.A., Lippard, S.J., Roberts, S., 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In:

Kokelaar, B.P., Howells, M.F. (eds.). Marginal Basin. Geology, Geological Society Special Publications, 16, 17-94.

Pearce, J.A., Parkinson, I.J., 1993. Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard, H.M., Alabaster, T. (eds.). Geological Society Special Publications, 76, 373-403.

Pe-Piper, G., 1998. The nature of Triassic extension-related magmatism in Greece: Evidence from Nd and Pb isotope geochemistry. Geological Magazine, 135, 331-348.

Philip, J., Masse, J-P., Camoin, G., 1995. Tethyan Carbonate Platforms. In: Nairn, A.E.M., Ricov, L.E., Vrielynck, B., Dércourt, J. (eds.). The ocean basins and margins, 8. New York, Plenum Press, 239-265.

del Piaz, G.V., Martin, S., 1998. Evoluzione litosferica e magmatismo nel dominio austro-sudalpino dall’orogenesi varisica al rifting permo-mesozoico. Riunione estiva S.G.I., Memoire della Societa Geologica Italiana, 53, 43-62.

Plank, T., Langmiur, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145, 325-394.

Polat, A., Hofmann, A.W., Rosing, M.T., 2002. Boninite-like volcanic rocks in the 3.7–3.8Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology, 184, 231-254.

Polat, A., Hofmann, A.W., 2003. Alteration and geochemical patterns in the 3.7–3.8Ga Isua greenstone belt, West Greenland. Precambrian Research, 126, 197-218.

Pomonis, P., Tsikouras, V., Hatzipanagiotou, K., 2004. Comparative geochemical study of the Triassic trachyandesites of Glykomilia and alkali basalts from the Koziakas ophiolite mélange (W. Thessaly): implications for their origin. Bulletin of the Geological Society of Greece, 36, 587-596.

Pouchou, J.L., Pichoir, F., 1984. A new model for quantitative analyses. I. Application to the analysis of homogeneous samples. La Recherche Aérospatiale, 3, 13-38.

Pouchou, J.L., Pichoir, F., 1985. “PAP” (φ-ρ-Z) correction procedure for improved quantitative microanalysis. In: Armstrong, J.T. (ed.). Microbeam Analysis. San Francisco Press, 104-106.

Putirka, K., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry, 69, 61-120.

Robertson, A.H.F., 2007. Overview of tectonic settings related to the rifting and opening of Mesozoic ocean basins in the Eastern Tethys: Oman, Himalayas and Eastern Mediterranean regions. London, Geological Society, 282 (Special Publications), 325-389.

Rollinson, H.R., 1993. Using geochemical data: evaluation, presentation, interpretation. Longman, 352pp.

Saccani, E., Dilek, Y., Marroni, M., Pandolfi, L., 2015. Continental margin ophiolites of Neotethys: Remnants of Ancient Ocean–Continent Transition Zone (OCTZ) lithosphere and their geochemistry, mantle sources and melt evolution patterns.

Episodes, 38, 230-249.

Schmid, S.M., Fügenschuh, B., Kissling, E., Schuster, R., 2004. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97, 93-117.

Schmid, S.M., Bernoulli, D., Fügenschuh, B., Matenco, L., Scheffer, S., Schuster, R., Tischler, M., Ustaszewski, K., 2008. The

Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139-183.

Schmid, S.M., Fügensschuh, B., Kounov, A., Matenco, M., Nievergelt, P., Oberhansli, R., Pleuger, J., Schefer, S., Schuster, R., Tomljenović, B., Ustaszewski, K., van Hinsbergen, D.J.J., 2019. Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Research, 78, 308-374.

Segnör, A.M.C., 1984. The Cimmeride orogenic system and the tectonics of Eurasia. Geological Society of America Special Papers, 195, 1-82.

Šimunić, An., Šimunić, Al., 1979. Petrographic composition and genesis of Triassic deposits of Ivanščica (in Croatian, with English abstract). Kalnik and Ravna gora Mt. Geološki vjesnik, 32, 243-253.

Šimunić, An., 1992. Geological relations of the central part of the Croatian Zagorje (in Croatian, with English abstract). PhD Thesis. University of Zagreb, Zagreb, 189 pp.

Šimunić, An., Šimunić, Al., 1997. Triassic Deposits of Hrvatsko Zagorje. Geologia Croatica, 50, 243-250.

Sloman, L.E., 1989. Triassic shoshonites from the dolomites, northern Italy: alkaline arc rocks in a strike-slip setting. Journal of Geophysical Research-Solid Earth, 94, 4655-4666.

Slovenec, Da., Lugović, B., 2009. Geochemistry and tectonomagmatic affinity of extrusive and dyke rocks from the ophiolite mélange in the SW Zagorje-Mid-Transdanubian Zone (Mt. Medvednica, Croatia). Ofioliti, 34, 63-80.

Slovenec, Da., Lugović, B., Vlahović, I., 2010. Geochemistry, petrology and tectonomagmatic significance of basaltic rocks from the ophiolite mélange at the NW ExternalInternal Dinarides junction (Croatia). Geologica Carpathica, 61, 273-294.

Slovenec, Da., Lugović, B., Meyer, P., Garapić-Šiftar, G., 2011. A tectono-magmatic correlation of basaltic rocks from ophiolite

mélanges at the north-eastern tip of the Sava-Vardar suture Zone, Northern Croatia, constrained by geochemistry and petrology. Ofioliti, 36, 77-100.

Slovenec, Da., Šegvić, B., Halamić, J., Goričan, Š., Zanoni, G., 2020. An ensialic volcanic arc along the northwestern edge of Palaeotethys-Insights from the Mid-Triassic volcanosedimentary succession of Ivanščica Mt. (northwestern Croatia). Geological Journal, 55, 4324-4351.

Smirčić, D., Kolar-Jurkovšek, T., Aljinović, D., Barudžija, U., Jurkovšek, B., Hrvatović, H., 2018. Stratigraphic definition and correlation of the Middle Triassic volcaniclastic facies in the External Dinarides: Croatia and Bosnia and Herzegovina. Journal of Earth Science, 29, 864-878.

Smirčić, D., Aljinović, D., Barudžija, U., Kolar-Jurkovšek, T., 2020. Middle Triassic syntectonic sedimentation and volcanic

influence in the central part of the External Dinarides, Croatia (Velebit Mts.). Geological Quarterly, 64, 220-239.

Środoń, J., 2006. Identification and quantitative analysis of clay minerals. In: Bergaya, F., Theng, B., Lagaly, G. (eds.). Handbook of Clay Science. Amsterdam, Elsevier Ltd., 1, 765-787.

Stampfli, G.M., Mosar, J., Pillevuit, A., Vannay, J.C., 2001. PermoMesozoic evolution of the western Tethys realm: the NeoTethys East Mediterranean Basin connetion. In: Ziegler, P.A., Cavazza, W., Robertson, A.H.F., Crasquin-Soleau, S. (eds.). Peri-Tetys Memoir 6: Peri-Tethyan rift/wrench basins and passive margins. Mémories du Muséum National D‘Historie Naturalle, 186, 51-108.

Stampfli, G.M., Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic ocean isochrons. Earth and Planetary Science Letters, 196, 17-33.

Stampfli, G.M., Borel, G.D., Marchant, R., Mosar, J., 2002. Western Alps geological constraints on western Tethyan reconstructions. Journal of the Virtual Explorer, 8, 77.

Stampfli, G.M., Borel, G.D., 2004. The TRANSMED transects in space and time: Constraints on the paleotectonic evolution

of the Mediterranean domain. In: Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M., Ziegler, P.A. (eds.). The TRANSMED Atlas: the Mediterranean Region from crust to mantle. Berlin, Springer-Verlag, 53-80.

Stampfli, C., Hochard, C., Vérard, C., Wilhem, J., Von Raumer, J.F., 2013. The formation of Pangea. Tectonophysics, 593, 1-19.

Staudigel, H., Plank, T., White, B., Schmincke, H.U., 1996. Geochemical fluxes during sea floor alteration of the basaltic upper oceanic crust: DSDP Sites 417 and 418. In: Bebout, E., Scholl, D.W., Kirby, S.H., Platt, J.P. (eds.). Subduction: Top to Bottom. American Geophysical Union Geophysical Monograph, 96, 19-38.

Storck, J.C., Brack, P., Wotzlaw, J.F., Ulmer, P., 2018. Timing and evolution of Middle Triassic magmatism in the Southern Alps

(Northern Italy). London, Journal of Geological Society, 176, 253-268.

Sun, S.S., Nesbitt, R.W., 1978. Geochemical regularities and genetic significance of ophiolitic basalts. Geology, 6, 689-693.

Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (eds.). Magmatism in Ocean Basins. London, Geological Society Special Publications, 42, 313-345.

Sun, S.C., Zhang, L., Li, R.H., Hao, T.W., Wang, J.Y., Li, Z.Q., Zhang, F., Zhang, X.J., Guo, H., 2019. Process and Mechanism of Gold Mineralization at the Zhengchong Gold Deposit, Jiangnan Orogenic Belt: Evidence from the Arsenopyrite and Chlorite Mineral Thermometers. Minerals, 9, 133. DOI: doi.org/10.3390/min9020133

Swinden, H.S., Jenner, G.A., Fryer, B.J., Hertogen, J., Roddick, J.C., 1990. Petrogenesis and paleotectonic history of the Wild Bight Group, an Ordovician rifted island arc in central Newfoundland. Contribution to Mineralogy and Petrology, 105, 219-241.

Tari, V., Pamić, J., 1998. Geodynamic evolution of the northern Dinarides and the southern part of the Pannonian Basin. Tectonophysics, 297, 269-281.

Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution. Oxford, Blackwell Scientific Publication, 312pp.

Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241-265.

Thirlwall, M.F., Upton, B.G.J., Jenkins, C., 1994. Interaction between continental lithosphere and the Iceland plume - Sr–Nd–Pb isotope chemistry of Tertiary basalts, NE Greenland. Journal of Petrology, 35, 839-897.

Tillick, D.A., Peacor, D.R., Mauk, J.L., 2001. Genesis of dioctahedral phyllosilicates during hydrothermal alteration of volcanic rocks: I. The Golden Cross epithermal ore deposit, New Zealand. Clay Clay Minerals, 49, 126-140.

Tišljar, J., 2004. Sedimentologija klastičnih i silicijskih taložina (in Croatian). Zagreb, Institut za geološka istraživanja, 426 pp.

Trubelja, F., Burgath, K.P., Marchig, V., 2004. Triassic magmatism in the area of the Central Dinarides (Bosnia and Herzegovina): Geochemical Resolving of tectonic setting. Geologia Croatica, 57, 159-170.

Velledits, F., 2004. Anisian terrestrial sediments in the Bükk Mountains (NE Hungary) and their role in the Triassic rifting of the Vadar-Meliata branch of Neo-Tethys ocean. Rivista Italiana di Paleontologia e Stratigrafia, 110, 659-679.

Velledits, F., 2006. Evolution of Bükk Mountains (NE Hungary) during the Middle-Late Triassic asymmetric rifting of the Vadar-Meliata branch of the Neotethys Ocean. International Journal of Earth Sciences, 95, 395-412.

Vlahović, I., Tišljar, J., Velić, I., Matičec, D., 2005. Evolution of the Adriatic Carbonate Platform: Paleogeography, main events and depositional dynamics. Palaeogeography Palaeoclimatology Palaeoecology, 220, 333-360.

Walter, M.J., 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39, 29-60.

Wang, Z., Chen, B., Yan, X., Li, S., 2018. Characteristics of hydrothermal chlorite from the Niujuan Ag-Au-Pb-Zn deposit in the north margin of NCC and implications for exploration tools for ore deposits. Ore Geology Review, 101, 398-412.

White, W.M., Patchett, P.J., 1984. Hf-Nd-Sr isotopes and incompatible-element abundances in island arcs, and implications for magma origins and crust-mantle evolution. Earth and Planetary Science Letters, 67, 167-185.

Wilson, M., 1989. Igneous petrogenesis. London, Unwin Hyman Ltd., 466pp.

Wilson, M., Downes, H., Cebria, J.M., 1995. Contrasting fractionation trends in coexisting continental alkaline magma series: Cantal, Massif Central, France. Journal of Petrology, 36, 1729-1753.

Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products

using immobile elements. Chemical Geology, 20, 325-343.

Wood, D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50, 11-30.

Workman, R.K., Hart, S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231, 53-72.

Zane, A., Weiss, Z.A., 1998. Procedure for classifying rockforming chlorites based on microprobe data. Rendiconti Lincei, 9, 51-56.

Zanetti, A., Mazzucchelli, M., Sinigoi, S., Giovanardi, T., Peressini, G., Fanning, M., 2013. SHRIMP U-Pb Zircon Triassic intrusion age of the Finero mafic complex (Ivrea–Verbano zone, Western Alps) and its geodynamic implications. Journal of Petrology, 54, 2235-2265.

Zanoni, G., Šegvić, B., Moscariello, A., 2016. Clay mineral diagenesis in Cretaceous clastic reservoirs from West African passive margins (the South Gabon Basin) and its impact on regional geology and basin evolution history. Applied Clay Science, 134, 186-209.

Ziegler, P.A., Stampfli, G.M., 2001. Late Paleozoic–early Mesozoic plate boundary reorganization: collapse of the Variscan orogen and opening of Neotethys. Natura Bresciana Annales Museo Civico Science Natura, 25 (Monografia), 17-34.

Zindler, A., Hart, S., 1996. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493-571.

Zulauf, G., Dörr, W., Fisher-Spurlock, S.C., Gerdes, A., Chatzaras, V., Xypolias, P., 2015. Closure of the Paleotethys in the External Hellenides: Constraints from U–Pb ages of magmatic and detrital zircons (Crete). Gondwana Research, 28, 642-667.

Zulauf, G., Dörr, W., Marko, L., Krahl, J., 2018. The late EoCimmerian evolution of the external Hellenides: constraints from microfabrics and U–Pb detrital zircon ages of Upper Triassic (meta)sediments (Crete, Greece). International Journal of Earth Sciences, 107, 2859-2894.

Downloads

Published

2021-07-26

Issue

Section

Articles