40Ar/39Ar geochronology of Burdigalian paleobotanical localities in the central Paratethys (south Slovakia)


  • Katarína Šarinová Faculty of Natural Sciences, Comenius University in Bratislava https://orcid.org/0000-0003-1792-5862
  • Samuel Rybár Faculty of Natural Sciences, Comenius University in Bratislava https://orcid.org/0000-0003-4548-9340
  • Fred Jourdan Western Australian Argon Isotope Facility and John de Laeter Centre, Curtin University, Perth, Western Australia 6845, Australia. School of Earth and Planetary, SSTC and TIGeR, Curtin University, Perth, Western Australia 6845, Australia.
  • Adam Frew School of Earth and Planetary, SSTC and TIGeR, Curtin University, Perth, Western Australia 6845, Australia.
  • Celia Mayers School of Earth and Planetary, SSTC and TIGeR, Curtin University, Perth, Western Australia 6845, Australia.
  • Marianna Kováčová Faculty of Natural Sciences, Comenius University in Bratislava
  • Barbara Lichtman Faculty of Natural Sciences, Comenius University in Bratislava
  • Petronela Nováková Faculty of Natural Sciences, Comenius University in Bratislava
  • Michal Kováč Faculty of Natural Sciences, Comenius University in Bratislava




Ottnangian, Gyulakeszi Rhyolite Tuff Formation, 40Ar/39Ar dating, petrography, sedimentology


The Lipovany and Mučín paleobotanical localities contain important floral associations within the tuff horizons, which were used for determination of subtropical to tropical climatic conditions during the Early Miocene. Based on the combination of results from plagioclase and biotite 40Ar/39Ar dating, the age of the tuff deposition is around 17.3Ma. For the Lipovany locality, single-grain 40Ar/39Ar convergent ages of 17.49±0.54Ma and 17.28±0.06Ma, for plagioclase and biotite were obtained, respectively. The Mučín locality only provide an imprecise convergent age of 16.5±1.4Ma due to the small size of the analyzed plagioclase crystals. The results thus allowed to include the fossil subtropical flora of the studied localities in the late Ottnangian regional stage (upper part of the Burdigalian). Additionally, these age data indicate that deposition of the overlaying Salgótarján Formation starts much later than originally thought (during Ottnangian-Karpatian boundary).

Author Biographies

Katarína Šarinová, Faculty of Natural Sciences, Comenius University in Bratislava

Department of mineralogy and petrology

Samuel Rybár, Faculty of Natural Sciences, Comenius University in Bratislava

Department of geology and paleontology

Marianna Kováčová, Faculty of Natural Sciences, Comenius University in Bratislava

Department of geology and paleontology

Barbara Lichtman, Faculty of Natural Sciences, Comenius University in Bratislava

Department of mineralogy and petrology

Petronela Nováková, Faculty of Natural Sciences, Comenius University in Bratislava

Department of geology and paleontology

Michal Kováč, Faculty of Natural Sciences, Comenius University in Bratislava

Department of geology and paleontology


Bailey, J.C., 1981. Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chemical Geology, 32,


Bartkó, L., 1985. Geology of Ipolytarnoc. Geologica Hungarica series, Palaeontologica, 44, 16-71.

Böhme, M., 2003. The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 389-401. DOI: https://doi.org/10.1016/S0031-0182(03)00367-5

Erdei, B., Hably, L., Kázmér, M., Utescher, T., Bruch, A.A., 2007. Neogene flora and vegetation development of the Pannonian

domain in relation to palaeoclimate and palaeogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 115-140. DOI: https://doi.org/10.1016/j.palaeo.2007.03.036

Fusán, O., Biely, A., Ibrmajer, J., Plančár, J., Rozložník L., 1987. Basement of the Tertiary of the inner West Carpathians. Bratislava, Geological Institute of Dionýz Štúr, 123pp.

Gyalog, L., Síkhegyi, F. (eds.), 2005. Geological map of Hungary, M= 1: 100,000. Budapest, Hungarian State Geological Institute. Website: https://map.mbfsz.gov.hu/fdt100/. Last accessed: August 2020.

Hably, L., 1985. Early Miocene plant fossils from Ipolytarnoc, N. Hungary. Geologica Hungarica series, Palaeontologica,

, 78-255.

Hámor, G., Ravasz-Baranyai, L., Balogh, K., Árva-Sós, E., 1979. K/Ar dating of pyroclastic rocks in Hungary. Annales Géologiques des Pays Helléniques Tome hors série, 2, 491-500.

Harzhauser, M., Theobalt, D., Strauss, P., Mandic, O., Piller, W.E., 2019. Seismic-based lower and middle Miocene stratigraphy in the northwestern Vienna Basin (Austria). Newsletters on Stratigraphy, 52(2), 221-247. DOI: https://doi.org/10.1127/nos/2018/0490

Hastie, A.R., Kerr, A.C., Pearce, J.A., Mitchell, S.F., 2007. Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12), 2341-2357. DOI: https://doi.org/10.1093/petrology/egm062

Hilgen, F.J., Lourens, L.J., Van Dam, J.A., 2012. The Neogene Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (eds). The Geologic Time Scale 2012. Amsterdam, Elsevier, Volume 2, 923-978. DOI: https://doi.org/10.1016/B978-0-444-59425-9.00029-9

Hók, J., Šujan, M., Šipka, F., 2014. Tectonic division of the Western Carpathians: An overview and a new approach. Acta Geologica Slovaca, 6, 135-143.

Holcová, K., 2001. New methods in foraminiferal and calcareous nannoplankton analysis and evolution of Oligocene and

Miocene basins of the Southern Slovakia. Slovak Geological Magazine, 7(1), 19-41.

Horváth, F., Musitz, B., Balázs, A., Végh, A., Uhrin, A., Nádor, A., Koroknai, B., Pap, N., Tóth, T., Wórum, G., 2015. Evolution of the Pannonian Basin and its geothermal resources. Geothermics, 53, 328-352. DOI: https://doi.org/10.1016/j.geothermics.2014.07.009

Jeong, G.Y., Hillier, S., Kemp, R.A., 2011. Changes in mineralogy of loess–paleosol sections across the Chinese Loess Plateau.

Quaternary Research, 75, 245-255. DOI: https://doi.org/10.1016/j.yqres.2010.09.001

Jourdan, F., Renne, P., 2007. Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating standard using primary K–Ar standards. Geochimica et Cosmochimica Acta, 71, 387-402. DOI: https://doi.org/10.1016/j.gca.2006.09.002

Kocsis, L., Vennemann, T.W., Hegner, E., Fontignie, D., Tütken, T., 2009. Constraints on Miocene oceanography and climate

in the Western and Central Paratethys: O-, Sr-, and Ndisotope compositions of marine fish and mammal remains. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 117-129. DOI: https://doi.org/10.1016/j.palaeo.2008.10.003

Koppers, A.A.P., 2002. ArArCALC-software for 40Ar/39Ar age calculations. Computers & Geosciences, 28, 605-619. DOI:


Kordos, L., 1985. Footprints in the Lower Miocene sandstone of Ipolytarnoc. Geologica Hungarica series, Palaeontologica,

, 260-415.

Kučerová, J., 2009. Miocénna flóra z lokalít Kalonda a Mučín. Acta Geologica Slovaca, 1(1), 65-70.

Kuthan, M., Biely, A., Böhm, V., Čechovič, V., Fusán, O., Hovorka, D., Mazúr, E., Regásek, F., 1963. Vysvetlivky kprehľadnej geologickej mape ČSSR 1:200 000, M-34-XXXII Zvolen. Geofond Bratislava, 132pp.

Le Bas, M.J., Le Maitre, R.W., Strecheisen, A., Zanettin, B., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3), 745-750. DOI: https://doi.org/10.1093/petrology/27.3.745

Lukács, R., Harangi, Sz., Guillong, M., Bachmann, O., Fodor, L., Buret, Y., Dunkl, I., Sliwinski, J., von Quadt, A., Peytcheva, I.,

Zimmerer, M., 2018. Early to Mid-Miocene syn extensional massive silicic volcanism in the Pannonian Basin (EastCentral Europe): Eruption chronology, correlation potential and geodynamic implications. Earth-Science Reviews, 179, 1-19. DOI: https://doi.org/10.1016/j.earscirev.2018.02.005

Márton, E., 2007. Correlation of Miocene Volcanics in the Area of the North Hungary Paleogene Basin by the Combination

of Palaeomagnetic Marker Horizons and Magnetic Polarities. Joannea Geologie & Paläontologie, 9, 63-65.

Márton, E., Vass, D., Túnyi, I., Márton, P., Zelenka, T., 2007. Paleomagnetic properties of the ignimbrites from the famous

fossil footprints site, Ipolytarnóc (close to the HungarianSlovak frontier) and their age assignment. Geologica Carphatica, 58(6), 531-540.

Miall, A.D., 2006. The geology of fluvial deposits. New York, Springer, 582pp.

Nagy, E., 2005. Palynological evidence for Neogene climatic change in Hungary. Budapest, Ocassional Papers of the Geological Institute of Hungary, 205, 120pp.

Nagymarosy, A., Müller, P., 1988. Biostratigraphical aspects of the Neogene in the Pannonian Basin. In: Royden, L.H., Horváth, F. (eds.). The Pannonian Basin: A Study in Basin Evolution. American Association of Petroleum Geologists Memoir, 45, 69-77.

Němejc, F., 1963. Výsledky paleofloristických výskumú voblasti Modrého Kamene a Šahú na Jižním Slovensku. Geologické práce, Správy, 27, 115-119.

Němejc, F., Knobloch, E., 1969. Spodnomiocenní kvetena z Lipovan u Lučence. Geologické práce, Správy, 50, 204-206.

Němejc, F., Knobloch, E., 1973. Die Makroflora der Salgótarjáner Schichtengruppe (Die Flora aus Lipovany). In: Papp, A., Rögl, F., Seneš, J. (eds.). Cronostratigraphie und Neostratotypen, Miozän der zentralen Paratethys; M2 Ottnangien. Bratislava, Slovak Academy of Sciences, 694-759.

Németh, K., Martin, U., 2007. Practical Volcanology, Lecture Notes for Understanding Volcanic Rocks from Field Based Studies. Budapest, Geological Institue of Hungary, 221pp.

Nováková, P., Rybár, S., Šarinová, K., Nagy, A., Hudáčková, N., Jamrich, M., Teodoridis, V., Kováčová, M., Šujan, M., Vlček, T., Kováč, M., 2020. The late Badenian-Sarmatian (Serravallian) environmental transition calibrated by sequence stratigraphy (Eastern Danube Basin, Central Paratethys). Geologica Carpathica, 71(4), 291-313. DOI: https://doi.org/10.31577/GeolCarp.71.4.1

Pálfy, J., Mundil, R., Renne, P.R., Bernor, R.L., Kordos, L., Gasparik, M., 2007. U–Pb and 40Ar/39Ar dating of the Miocene fossil track site at Ipolytarnóc (Hungary) and its implications. Earth and Planetary Science Letters, 258, 160-174. DOI: https://doi.org/10.1016/j.epsl.2007.03.029

Pearce, J.A., 1996. A User´s Guide to Basalt Discrimination Diagrams. In: Wyman, D.A. (ed.). Trave Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, 12, 79-113.

Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene CalcAlkaline Volcanic Rocks from the Kastamonu Area, Northern

Turkey. Contributions to Mineralogy and Petrology, 58, 63-81. DOI: https://doi.org/10.1007/BF00384745

Renne, P.R., Mundil, R., Balco, G., Min, K., Ludwig, K.R., 2010. Joint determination of 40K decay constants and 40Ar*/40K

for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica

Acta, 75(17), 5097-5100. DOI: https://doi.org/10.1016/j.gca.2010.06.017

Renne, P.R., Balco, G., Ludwig, K.R., Mundil, R., Min, K., 2011. Response to the comment by Schwarz et al., on “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by Renne et al., 2010. Geochimica et Cosmochimica Acta, 74, 5349-5367. DOI: https://doi.org/10.1016/j.gca.2011.06.021

Renne, P.R., Deino, A.L, Hilgen, F.J., Kuiper, K.F., Mark, D.F., Mitchell, W.S., Morgan, L.E., Mundil, R., Smit, J., 2013. Time scales of critical events around the Cretaceous-Paleogene boundary. Science, 339(6120), 684-687. DOI: https://doi.org/10.1126/science.1230492

Repčok, I., 1987. Vek niektorých vulkanitov Krupinskej planiny, Burdy a Cerovej vrchoviny metódou stôp po štiepení uránu.

Geologické práce, Správy, 86, 173-177.

Rieder, M., Cavazzini, G., D‘yakonov, Y., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z., Wones, D.R., 1998. Nomenclature of the Micas. The Canadian Mineralogist, 36, 586-595. DOI: https://doi.org/10.1180/002646199548385

Roetzel, R., de Leeuw, A., Mandic, O., Márton, E., Nehyba, S., Kuiper, K., Scholger, R., Wimmer-Frey, I., 2014. Lower Miocene (upper Burdigalian, Karpatian) volcanic ash fall at the south-eastern margin of the Bohemian Massif in Austria – New evidence from Ar/Ar-dating, palaeomagnetic, geochemical and mineralogical investigations. Austrian Journal of Earth Sciences, 107(2), 2-22.

Ruman, A., Ćorić, S., Halásová, E., Harzhauser, M., Hudáčková, N., Jamrich, M., Palzer-Khomenko, M., Kranner, M., Mandic,

O., Rybár, S., Šimo, V., Šujan, M., Kováč, M., 2021. The “Rzehakia beds” on the northern shelf of the Pannonian Basin: biostratigraphic and palaeoenvironmental implications. Facies, 67(1). DOI: https://doi.org/10.1007/s10347-020-00609-6

Schaltegger, U., Davies, J.H., 2017. Petrochronology of zircon and baddeleyite in igneous rocks: Reconstructing magmatic

processes at high temporal resolution. Reviews in Mineralogy and Geochemistry, 83, 297-328. DOI: https://doi.org/10.2138/


Sitár, V., Kvaček, Z., 1997. Additions and revisions to the early Miocene flora of Lipovany (Southern Slovakia). Geologica

Carpathica, 48(4), 263-280.

Sun, S.-s., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. London, Geological Society, 42, 313-345. DOI: https://doi.org/10.1144/GSL.SP.1989.042.01.19

TimeScale Creator GT, 2016. The age model is from: Ogg, J.G., Ogg, G.M., Gradstein, F.M., 2016. A Concise Geologic Time Scale. Elsevier, 240pp. Downloaded: August 2020. Website: https://timescalecreator.org/index/index.php Tischendorf, G., Förster, H.-J., Gottesmann, B., Rieder, M., 2007. True and brittle micas: composition and solid-solution series. Mineralogical Magazine, 71(3), 285-320. DOI: https://doi.org/10.1180/minmag.2007.071.3.285

Vass, D., Elečko, M., Kantorová, V., Lehotayová, R., Klubert, J., 1987. Prvý nález morského otnangu v juhoslovenskej panve.

Mineralia Slovaca, 19(5), 417-422.

Vass, D., Elečko, M. (eds.), Bezák, V., Bodnár, J., Pristaš, J., Konečný, V., Lexa, J., Molák, B., Straka, P., Stankovič, J., Stolár, M., Škvarka, L., Vozár, M., Vozárová, A., 1992. Vysvetlivky ku geologickej mape Lučenskej kotliny a Cerovej vrchoviny 1:50 000. Bratislava, Geologický ústav Dionýza Štúra, 196pp.

Vass, D. (ed.), Bezák, V., Elečko, M., Konečný, V., Lexa, J., Pristaš, J., Straka, P., Vozár, J., 1992. Geological Map of the Lučenská kotlina Depression and Cerová vrchovina Upland. In: Geologická mapa Slovenska M 1:50 000. Bratislava, Štátny geologický ústav Dionýza Štúra, 2013. Website: http://apl.geology.sk/gm50js. Last access: August 2020.

Vass, D., 2002. Lithostratigraphy of Western Carpathians: Neogene and Buda Paleogene. Bratislava, State Geological Institute of Dionýz Štúr, 200pp.

Vass, D., Kráľ, J., Fordinál, K., Elečko, M., 2003. Hodnotenie výsledkov stronciovej izotopovej stratigrafie juhoslovenského kenozoika. Mineralia Slovaca, 35, 117-124.

Vass, D., Túnyi, I., Márton, E., 2006. The Feher hegy Formation: Felsitic ignimbrites and tuffs at Ipolytarnoc (Hungary), their

age and position in Lower Miocene of Northern Hungary and Southern Slovakia. Slovak Geological Magazine, 12(2), 139-145.

Verati, C., Jourdan, F., 2014. Modelling effect of sericitization of plagioclase on the 40K/40Ar and 40Ar/39Ar chronometers:

Implication for dating basaltic rocks and mineral deposits. London, Geological Society, 378(1), 155-174. DOI: https://doi.org/10.1144/SP378.14