Geochemical, isotopic, and zircon (U-Pb, O, Hf isotopes) evidence for the magmatic sources of the volcano-plutonic Ollo de Sapo Formation, Central Iberia

Authors

  • P. MONTERO Department of Mineralogy and Petrology, University of Granada Campus Fuentenueva, 18002 Granada, Spain.
  • C. TALAVERA John de Laeter Centre, Curtin University Perth, Western Australia 6102, Australia
  • F. BEA Department of Mineralogy and Petrology, University of Granada Campus Fuentenueva, 18002 Granada, Spain.

DOI:

https://doi.org/10.1344/GeologicaActa2017.15.4.1

Keywords:

SHRIMP, Isotopes, Extension, Gneisses, Magmatic source

Abstract

The Ollo de Sapo Formation comprises variably metamorphosed felsic peraluminous volcanic rocks and highlevel granites that crop out over some 600km from the Cantabrian coast to central Spain in the northern part of the Central Iberian Zone. The Ollo de Sapo magmatism is not obviously connected with any major tectonic or metamorphic event so its origin is controversial. Some authors, based on trace-elements, have proposed that the Ollo de Sapo magmas originated in a supra-subduction setting but others, based on abnormally high zircon inheritance and field and structural data, favored a rifting environment. Here we present new oxygen and hafnium isotope data from the very characteristic Ollo the Sapo zircons, which in most cases, consist of ca. 485Ma rims and ca. 590-615Ma cores. We found that the Cambrian-Ordovician rims yielded unimodal distributions that cluster around ∂18O = 10, typical of S-type magmas formed from melting of altered crust. The Ediacaran cores, in contrast, cluster around ∂18O = 6.5, consistent with being arc-magmas. Rims and cores have the same average Hf isotope composition, but the rims are considerably more uniform. These data, coupled with existing wholerock element and Sr and Nd isotopic data, indicate that the Ollo de Sapo were S-type magmas that resulted from anatexis of younger-than-600Ma immature sediments mostly derived from different Ediacaran igneous rocks with a wide range of Hf isotope composition.

Author Biographies

P. MONTERO, Department of Mineralogy and Petrology, University of Granada Campus Fuentenueva, 18002 Granada, Spain.

Departamento de Mineralogía y Petrología

C. TALAVERA, John de Laeter Centre, Curtin University Perth, Western Australia 6102, Australia

Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6102, Australia

References

Bea, F., Montero, P., Zinger, T., 2003. The Nature and Origin of the Granite Source Layer of Central Iberia: Evidence from Trace Element, Sr and Nd Isotopes, and Zircon Age Patterns. Journal of Geology, 111, 579-595.

Bea, F., Montero, P., Ortega, M., 2006a. A LA-ICPMS evaluation of Zr reservoirs in common crustal rocks: implications for Zr and Hf geochemistry, and zirconforming processes. Canadian Mineralogist, 44, 693-714.

Bea, F., Montero, P., Talavera, C., Zinger, T., 2006b. A revised Ordovician age for the oldest magmatism of Central Iberia:

U-Pb ion microprobe and LA-ICPMS dating of the Miranda do Douro orthogneiss. Geologica Acta, 4, 395-401.

Bea, F., Montero, P., González Lodeiro, F., Talavera, C., 2007. Zircon inheritance reveals exceptionally fast crustal magma generation processes in Central Iberia during the Cambro-Ordovician. Journal of Petrology, 48, 2327-2339.

Bea, F., Montero, P., Talavera, C., Abu Anbar, M., Scarrow, J.H., Molina Palma, J.F., Moreno, J.A., 2010. The palaeogeographic position of Central Iberia in Gondwana during the Ordovician: evidence from zircon chronology and Nd isotopes. Terra Nova, 22, 341-346.

Bea, F., Montero, P., Abu Anbar, M., Molina, J.F., Scarrow, J., 2011. The Bir Safsaf Precambrian inlier of South West Egypt revisited. A model for ~ 1.5Ga TDM late PanAfrican granite generation by crustal reworking. Lithos, 125, 897-914.

Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.A., Davis, D.W., Korsch, J.R., Foudolis, C., 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200, 155-170.

Chu, N.C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A., German, C.R., Bayon, G., Burton, K., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 17, 1576-1574.

Cumming, G.L., Richards, J.R., 1975. Ore lead isotope ratios in a continuously changing Earth. Earth and Planetary Science

Letters, 28, 155-171.

Del Greco, K., Johnston, S.T., Shaw, J., 2016. Tectonic setting of the North Gondwana margin during the Early Ordovician: A comparison of the Ollo de Sapo and Famatina magmatic events. Tectonophysics, 681, 73-84.

DePaolo, D.J., 1981. Neodymium isotopes in the Colorado Front Range and implications for crust formation and mantle evolution in the Proterozoic. Nature, 291, 193-197.

Díez Montes, A., Navidad, M., González Lodeiro, F., Martínez Catalán, J.R., 2004. El Ollo de Sapo. In: Vera, J.A., (ed.). Geología de España, Sociedad Geológica Española (SGE)-Instituto Geológico y Minero de España (IGME), Madrid, 69-72.

Díez Montes, A., Martínez Catalán, J.R., Bellido Mulas, F., 2010. Role of the Ollo de Sapo massive felsic volcanism of NW Iberia in the Early Ordovician dynamics of northern Gondwana. Gondwana Research, 17(2-3), 363-376.

Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42, 2033-2048.

Gebauer, D., Martínez-García, E., Hepburn, J.C., 1993. Geodynamic significance, age and origin of the Ollo de Sapo Augengneiss (NW Iberian Massif, Spain). Proceedings from Geological Society of America, 1993 annual meeting, Abstracts with Programs 25-6, p.342.

González Lodeiro, F., 1981. La estructura del anticlinorio del “Ollo de Sapo” en la región de Hiendelaencina (extremo oriental del Sistema Central Español). Cuadernos Geología Ibérica, 7, 535-545.

Govindaraju, K., Potts, P.J., Webb, P.C., Watson, J.S., 1994. Report on Whin Sill Dolerite WS-E from England and Pitscurrie Micrograbbro PM-S from Scotland: assessment by one hundred and four international laboratories. Geostandards Newsletters, XVIII(2), 211-300.

Gutiérrez Marco, J.C., Robardet, M., Rábano, I., Sarmiento, G.N., San José Lancha, M.A., Herranz, P., Pieren Pidal, A.P., 2002.

Ordovician. In: Gibbons, W., Moreno, T. (eds.). The Geology of Spain. London, Geological Society, 31-49.

Helbing, H., Tiepolo, M., 2005. Age determination of Ordovician magmatism in NE Sardinia and its bearing on Variscan basement evolution. Journal of the Geological Society, 162, 689-700.

Ickert, R., Hiess, J., Williams, I., Holden, P., Ireland, T., Lanc, P., Schram, N., Foster, J., Clement, S., 2008. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chemical Geology, 257(1-2), 114-128.

Iglesias Ponce de León, M., Ribeiro, A., 1981. Position stratigraphique de la formation Ollo de Sapo dans la région de Zamora (Espagne) - Miranda do Douro (Portugal). Comunicaçoes do Servicio Geológico de Portugal, 67(2), 141-146.

Laumonier, B., Autran, A., Barbey, P., Cheilletz, A., Baudin, T., Cocherie, A., Guerrot, C., 2004. On the non-existence of a Cadomian basement in southern France (Pyrenees, Montagne Noire): implications for the significance of the pre-Variscan (pre-Upper Ordovician) series. Bulletin de la Société Géologique de France, 175(6), 643-655.

Luth, W.C., Jahns, R.H., Tuttle, O.F., 1964. The granite system at pressures of 4 to 10 kilobars. Journal of Geophysical Research, 69, 759-773.

Montero, P., Bea, F., 1998. Accurate determination of 87Rb/86Sr and 147Sm/144Nd ratios by inductively-coupled-plasma mass spectrometry in isotope geoscience: an alternative to isotope dilution analysis. Analytica Chimica Acta, 358, 227-233.

Montero, P., Bea, F., González-Lodeiro, F., Talavera, C., Whitehouse, M., 2007. Zircon crystallization age and protolith history of the metavolcanic rocks and metagranites of the Ollo de Sapo Domain in central Spain. Implications for the Neoproterozoic to Early-Paleozoic evolution of Iberia. Geological Magazine, 144(6), 963-976.

Montero, P., Talavera, C., Bea, F., González-Lodeiro, F., Whitehouse, M.J., 2009. Zircon geochronology and the age of the Cambro-Ordovician rifting in Iberia. Journal of Geology, 117, 174-191.

Navidad, M., Bea, F., 2004. El magmatismo prevarisco de la Zona Centroibérica. In: Vera, J.A. (ed.). Geología de España,

Sociedad Geológica Española- Instituto Geológico y Minero de España (SGE-IGME), Madrid, 92-96.

O’Connor, J.T., 1965. A classification for quartz-rich igneous rocks based on feldspar ratios. U.S. Geological Survey Professional Paper, 525B, B79-B84.

Parga-Pondal, I., Matte, P., Capdevila, R., 1964. Introduction à la géologie de ‘l’Ollo de Sapo’, Formation porphyrode antesilurienne du nord ouest de l’Espagne. Notas y Comunicaciones del Instituto Geológico y Minero de España, 76, 119-153.

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508-2519.

Peacock, M.A., 1931. Classification of igneous rock series. Journal of Geology, 39, 54-67.

Rodríguez Alonso, M.D., Díez Bald, M.A., Perejón, A., Pieren, A.P., Liñán, E., López Díaz, F., Moreno, F., Gómez Vintanez, J.A., González Lodeiro, F., Martinez Poyatos, D., Vegas, R., 2004. 2.4.3.1. Estratigrafía: La secuencia litoestratigráfica del Neoproterozoico-Cámbrico Inferior. In: Vera, J.A. (ed.). Geología de España, Sociedad Geológica Española - Instituto Geológico y Minero de España (SGE-IGME), Madrid, 78-81.

Rudnick, R.L., Fountain, D.M., 1995. Nature and Composition of the Continental-Crust-a Lower Crustal Perspective. Reviews of Geophysics, 33, 267-309.

Sola, A.R., Pereira, M.F., Williams, I.S., Ribeiro, M.L., Neiva, A.M.R., Montero, P., Bea, F., Zinger, T., 2008. New insights from U-Pb zircon dating of Early Ordovician magmatism on the northern Gondwana margin: The Urra Formation (SW Iberian Massif, Portugal). Tectonophysics, 461, 114-129.

Talavera, C., Montero, M.P., Bea, F., 2008. Precise single-zircon Pb-Pb dating reveals that Aljucén (Mérida) is the oldest plutonic body of the Central Iberian Zone. Geotemas, 10, 249-252.

Talavera, C., Montero, P., Martinez Poyatos, D., Williams, I.S., 2012. Ediacaran to Lower Ordovician age for rocks ascribed to the Schist–Graywacke Complex (Iberian Massif, Spain): Evidence from detrital zircon SHRIMP U–Pb geochronology. Gondwana Research, 22, 928-942.

Talavera, C., Montero, P., Bea, F., Gonzalez Lodeiro, F., Whitehouse, M., 2013. U-Pb Zircon geochronology of the Cambro-Ordovician metagranites and metavolcanic rocks of central and NW Iberia. International Journal of Earth Sciences, 102(1), 1-23.

Taylor, S.R., Emeleus, C.H., Exley, C.S., 1956. Some anomalous K/Rb ratios in igneous rocks and their petrological significance. Geochimica et Cosmochimica Acta, 10(4), 224-229.

Teipel, U., Eichhorn, R., Loth, G., Rohrmuller, J., Holl, R., Kennedy, A., 2004. U-Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): Implications for Upper Vendian and Lower Ordovician magmatism. International Journal of Earth Sciences, 93(5), 782-801.

Valley, J.W., 2003. Oxygen isotopes in zircon. Reviews in mineralogy and geochemistry, 53(1), 343-385.

Valverde-Vaquero, P., Dunning, G.R., 2000. New U-Pb ages for Early Ordovician magmatism in Central Spain. Journal of the

Geological Society, 157, 15-26.

Vervoort, J.D., Kemp, A.I.S., 2016. Clarifying the zircon Hf isotope record of crust–mantle evolution. Chemical Geology, 425, 65-75.

Vialette, Y., Casquet, C., Fúster, J.M., Ibarrola, E., Navidad, M., Peinado, M., Villaseca, C., 1987. Geochronological study of orthogneisses from the Sierra de Guadarrama (Spanish Central System). Neues Jahrbuch für Mineralogie Monatshefte, 10,

-479.

Wildberg, H.G., Bischoff, L., Baumann, A., 1989. U-Pb ages of zircons from meta-igneous and meta-sedimentary rocks of

the Sierra de Guadarrama: Implications for the Central Iberia crustal evolution. Contributions to Mineralogy and Petrology,

, 253-262.

Williams, I.S., Claesson, S., 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of

high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. II: Ion microprobe zircon U-Th-Pb. Contribution

to Mineralogy and Petrology, 97, 205-217.

Downloads

Published

2017-10-23

Issue

Section

Granites and Related Rocks. A tribute to Guillermo Corretgé

Most read articles by the same author(s)