Temporal variability of secondary processes in alkaline geothermal waters associated to granitic rocks: the Caldes de Boí geothermal system (Spain)

Authors

  • M.P. ASTA environmental Microbiology Laboratory (EML), école Polytechnique Fédérale de Lausanne 1015 Lausanne, Switzerland.
  • M.J. GIMENO Earth Sciences Department, Sciences Faculty, University of Zaragoza C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
  • L.F. AUQUÉ Earth Sciences Department, Sciences Faculty, University of Zaragoza C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
  • J.P. GALVE Department of Geodynamics, University of Granada Campus de Fuentenueva s/n, 18071 Granada, Spain
  • J. GÓMEZ Earth Sciences Department, Sciences Faculty, University of Zaragoza C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
  • P. ACERO Earth Sciences Department, Sciences Faculty, University of Zaragoza C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
  • P. LAPUENTE Earth Sciences Department, Sciences Faculty, University of Zaragoza C/Pedro Cerbuna 12, 50009 Zaragoza, Spain

DOI:

https://doi.org/10.1344/GeologicaActa2017.15.2.1

Keywords:

Geothermal system, Secondary processes, Mixing waters, Conductive cooling, CO2 input, Geochemical modelling techniques

Abstract

The Caldes de Boí geothermal waters show important differences in pH (6.5–9.6) and temperature (15.9ºC–52ºC) despite they have a common origin and a very simple circuit at depth (4km below the recharge area level). Thes differences are the result of secondary processes such as conductive cooling, mixing with colder shallower waters, and input of external CO2, which affect each spring to a different extent in the terminal part of the thermal circuit.
In this paper, the secondary processes that control the geochemical evolution of this system have been addressed using a geochemical dataset spanning over 20 years and combining different approaches: classical geochemical calculations and geochemical modelling. Mixing between a cold and a thermal end-member, cooling and CO2 exchange are the processes affecting the spring waters with different intensity over time. These differences in the intensity of the secondary processes could be controlled by the effect of climate and indirectly by the geomorphological and hydrogeological setting of the different springs. Infiltration recharging the shallow aquifer is dominant during the rainy seasons and the extent of the mixing process is greater, at least in some springs.Moreover, significant rainfall can produce a decrease in the ground temperature favouring the conductive cooling. Finally, the geomorphological settings of the springs determine the thickness and the hydraulic properties of the saturated layer below them and, therefore, they affect the extent of the mixing process between the deep thermal waters and the shallower cold waters. The understanding of the compositional changes in the thermal waters and the main factors that could affect them is a key issue to plan the future management of the geothermal resources of the Caldes de Boí system. Here, we propose to use a simple methodology to assess the effect of those factors, which could affect the quality of the thermal waters for balneotherapy at long-term scale. Furthermore, the methodology used in this study can be applied to other geothermal systems.

References

Albert, J.F., Corominas, J., París, C., 1979. El estudio hidrogeológico de los manantiales y su aplicación geológica: caso de las aguas termales, carbónicas y sulfhídricas de Cataluña. Acta Geologica Hispánica, 14, 391-394.

Alaux-Negrel, G., Beaucaire, C., Michard, G., Toulhoat, P., Ouzounian, G., 1993. Trace-metal behaviour in natural granitic waters. Journal of Contaminant Hydrology, 13, 309-325.

Arranz, E., 1997. Petrología del macizo granítico de La Maladeta (Huesca-Lérida): estructura, mineralogía, geoquímica y petrogénesis. Doctoral Thesis. Universidad de Zaragoza, 319pp.

Asta, M.P., Gimeno, M.J., Auqué, L.F., Gómez, J., Acero, P., Lapuente, P., 2010. Secondary processes determining the pH of alkaline waters in crystalline rock systems. Chemical Geology, 276, 41-52.

Asta, M.P., Gimeno, M.J., Auqué, L.F., Gómez, J., Acero, P., Lapuente, P., 2012. Hydrochemistry and geothermometrical modeling of Panticosa geothermal system (Spain). Journal of Volcanology and Geothermal Research, 235-236, 84-95.

Asta, M.P., Auqué, L.F., Sanz, F.J., Gimeno, M.J., Acero, P., Blasco, M., García-Alix, A., Gómez, J., Delgado-Huertas, A., Mandado, J., 2017. Travertines associated with the AlhamaJaraba thermal waters (NE, Spain): Genesis and geochemistry. Sedimentary Geology, 347, 100-116.

Atkinson, T.C., Davison, R.M., 2002. Is the water still hot? Sustainability and the thermal springs at Bath, England. London, Geological Society, 193 (Special Publications), 15-40.

Auqué, L.F., 1993. Estudio de los sistemas geotermales en Aragón. Pautas de especiación y reacción aplicadas a la modelización de sistemas de baja-media entalpía. Doctoral Thesis. Universidad de Zaragoza, 509pp.

Auqué, L.F., Mandado, J., Gimeno, M.J., López, P.L., Gómez, J., 1996. Los sistemas geotermales del Pirineo Central. I. Caracteres geoquímicos y fisicoquímicos de los manantiales termales. Estudios Geológicos, 52, 161-173.

Auqué, L.F., Mandado, J., López, P.L., Gimeno, M.J., 1997. Los sistemas geotermales del Pirineo Central. II. Resultados de la aplicación de técnicas geotermométricas. Estudios Geológicos, 53, 45-54.

Auqué, L.F., Mandado, J., López, P.L., Lapuente, P., Gimeno, M.J., 1998. Los sistemas geotermales del Pirineo Central. III. Evaluación de las condiciones en profundidad y evolución de las soluciones hidrotermales durante su ascenso. Estudios Geológicos, 54, 25-37.

Ball, J.W., Nordstrom, D., 2001. User’s manual for WATEQ4F with revised thermodynamic database and test cases for calculating speciation of major, trace and redox elements in natural waters. U.S. Geological Survey, Water-Resources Investigations Report, 91-183.

Boulègue, J., 1979. Formation des eaux termales sulfureés des Pyrénées Orientales. Origine du Soufre. Géochimie du fer et du cuivre. Journal Francais d’Hydrologie, 10, 91-102.

Boulègue, J., Fouillac, C., Michard, G., 1981. Dêpots minéraux à l’émergence des sources thermales sulfurées sodiques des Pyrénées Orientales. Bulletin de Mineralogie, 104, 661-668.

Bourke, D., 1979. Etude Géologique de la terminaison orientale du Massif de la Maladeta et de sesabords, región d’Espot (province de Lérida, Pyrénées espagnoles). Doctoral Thesis. Lille University, 69pp.

Buil, B., García, S., Lago, M., Arranz, E., Auqué, L., 2002. Estudio geoquímico de los procesos de interacción agua-roca sobre sistemas geotermales de aguas alcalinas en granitoides. Madrid, ENRESA, Publicación Técnica 02, 246pp.

Buil, B., Gómez, P., Turero, M.J., Garralón, A., Lago, M., Arranz, E., De la Cruz, B., 2006. Factors that control the geochemical evolution of hydrotermal systems of alkaline water in granites in Central Pyrenees (Spain). Journal of Iberian Geology, 32, 283-302.

Chae, G.T., Yun, S.T., Kim, K., Mayer, B., 2006. Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water–rock interaction and hydrologic mixing. Journal of Hydrology, 321, 326-343.

Charlet, J.M., 1972. Étude géologique et petrographique du Massif Granitique de La Maladeta (Pyrénées Centrales Espagnoles Doctoral Thesis, Polytechnic University of Mons, 115pp.

Charlet, J.M., 1977. Le métamorphisme au contact des granitoïdes entre les vallés de l’Esera et de la Noguera Ribagorzana (Pyrénées Centrales Espagnoles). Annales de la Société Géologique du Nord, 97, 165-177.

Charlet, J.M., Dupuis, C., 1974. Observations nouvelles dans la Massif de la Maladeta. In Actas del VII Congreso Internacional de Estudios Pirenaicos (La Seo de Urgel, 1974): 37-38.

Chevalier-Lemire, G., Pigassou, R., Rigaill, R., Vilmues, T., 1990. Étude des variations naturelles du debit des sources thermales à Luchon (Haute-Garonne, France) par modèle hydrologique

global pluies-débits. Hydrogéologie, 4, 287-296.

Corominas, J., 1978. Condiciones hidrogeológicas de los manantiales sulfhídricos de Cataluña. Acta Geologica Hispánica, 13(1), 26-30.

Couturier, Y., Michard, G., Sarazin, G., 1984. Constantes de formation des complexes hydroxydés de l’aluminium en solution aqueuse de 20 ºC a 70 ºC. Geochimica et Cosmochimica Acta, 48, 649-659.

Criaud, A., Vuataz, D., 1984. Etude géochimique et géothermique des eaux sulfurées sodiques de Luchon, Pyrénées. Rapport du Bureau de Recherches Geologiques et Minières (BRGM) Rapport 84 SGN 384 IRG, 61pp.

De Sitter, L.U., 1959. Geological map of the Central Pyrenees, 1/50.000. Sheet 3, Ariège. Geological Institute, Leiden University. Leidsche Geologische Mededelingen, 22, 351-418.

De Sitter, L.U., Zwart, H.J., Kleinsmiede, W.F.J., 1960. Geological map of the Central Pyrenees, 1/50.000. Sheet 4, Valle de Aran. Geological Institute, Leiden University.

Delgado, J., 1993. Caracterización mineralógica, físico-química y geoquímica de los skarns del contacto norte del batolito de la Maladeta (Val d’Aran, Lleida). Doctoral Thesis. Universitat de Barcelona, 412pp.

Druschel, G.K., Rosenberg, P.E., 2001. Non-magmatic fracturecontrolled hydrothermal systems in the Idaho Batholith: South Fork Payette geothermal system. Chemical Geology, 173, 271-291.

Dunne, T., 1978. Water in environmental planning. New York (USA), W.H. Freeman and Company, 818pp.

ENHER, 1985. Estudio geológico y geoquímico de detalle de la zona de surgencias termales de Caldes de Bohí y Artiés. Permiso de exploración nº 3952 “Pallars”. Barcelona, 1985.

Fernández, M., Banda, E., 1989. An approach to the thermal field in northeastern Spain. Tectonophysics, 164, 259-266.

Fournier, R.O., 1979. Geochemical and hydrological considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hotspring systems. Journal of Volcanology and Geothermal Research, 5, 1-16.

Gimeno, M.J., Auqué, L.F., Gómez, J.B., García, I., 2007. Geochemical features and geothermometric modeling of Les Escaldes geothermal system (Andorra). In: Bullen, T., Wang,

Y. (eds.). Proceedings of the 12th International Symposium on water-rock interaction, 321-324.

Gimeno, M.J., Auqué, L.F., Acero, P., Gómez, J.B., 2014. Hydrogeochemical characterisation and modelling of groundwaters in a potential geological repository for spent nuclear fuel in crystalline rocks (Laxemar, Sweden). Applied Geochemistry, 45, 50-71.

Gómez, J.B., Gimeno, M.J., Auqué, L.F., Acero, P., 2014. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden. Science of the Total Environment, 468-469, 791-803.

Gupta, S.C., Wang, D., Dong, H.K., 2006. Water Retention in Soil. In: Lal, R. (ed.). Encyclopedia of Soil Science. Boca Ratón, Florida, CRC Press, 2nd Edition, 1864-1869.

Gutenbrunner, C., Bender, T., Cantista, P., Karagülle, Z., 2010. A proposal for a worldwide definition of health resort medicine, balneology, medical hydrology and climatology. International Journal of Biometeorology, 54, 495-507.

Han, D.M., Liang, X., Jin, M.G., Currell, M.J., Song, X.F., Liu, C.M., 2010. Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems, Xinzhou Basin. Journal of Volcanology and Geothermal Research, 189, 92-104.

IGME, 1984. Proyecto de investigación geotérmica preliminar del Pirineo Central, zona meridional del Prelitoral Catalán e Islas Baleares. Unpublished, Vol. 3, Ministerio de Industria y Energía, 188pp.

Jones, A., Montanarella, L., Jones, R. (eds.), 2005. Soil Atlas of Europe. Luxembourg, Office for Official Publications of the European Communities, 128pp.

Kele, S., Breitenbach, S.F.M., Capezzuoli, E., Meckler, A.N., Ziegler, M., Millan, I.M., Kluge, T., Deák, J., Hanselmann, K., John, C.M., Yan, H., Liu, Z., Bernasconi, S.M., 2015. Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: a study of travertines and tufas in the 6–95ºC temperature range. Geochimica et Cosmochimica Acta, 168, 172-192.

Kleinsmiede, W.F.J., 1960. Geology of the Valle de Arán (Central Pyrenees). Leidsche Geologische Mededelingen, 25, 129-245.

Lal, R., Shukla, M. (eds.), 2004. Principles of Soil Physics. New York and Basel, Marcel Dekker Inc., 682pp.

López-Moreno, J.L., García-Ruiz, J.M., 2004. Influence of snow accumulation and snowmelt on stream flow in the central Spanish Pyrenees. Hydrological Sciences Journal, 49(5), 787-802.

Martinez, J.L., Raiber, M., Cendónc, D.I., 2017. Using 3D geological modelling and geochemical mixing models to characterise alluvial aquifer recharge sources in the upper Condamine River catchment, Queensland, Australia. Science of the Total Environment, 574, 1-18.

Mey, P.H.W., 1965. Geological map of the Ribagorzana and Baliera valleys, Central Pyrenees, 1/25.000. Geological Institute, Leiden University.

Mey, P.H.W., 1968. Geology of the Upper Ribagorzana and Tor Valleys, sheet 8, Central Pyrenees, Spain. Leidsche Geologische Mededelingen, 41, 229-292.

Michard, G., 1983. Recueil de données thermodynamiques concernant les équilibres eaux-minéraux dans les réservoirs géothermaux. Rapport EUR 8590 FR, 156 p.

Michard, G., 1990. Behaviour of major elements and some trace elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in deep hot waters from granitic areas. Chemical Geology, 89, 117-134.

Michard, G., Fouillac, C., 1980. Contrôle de la composition chimique des eaux thermals sulfurées sodiques du Sud de la France. In: Tardy, Y. (ed.). Geochimique des interactions entre les eaux, les minéraux et les roches. Elements Tarbes, 147-166.

Michard, G., Roekens, E., 1983. Modelling of the chemical composition of alkaline hot waters. Geothermics, 12, 161-169.

Michard, G., Sanjuan, B., Criaud, A., Fouillac, C., Pentcheva, E.N., Petrov, P.S., Alexieva, R., 1986. Equilibria and geothermometry in hot waters from granites of SW Bulgaria. Geochemical Journal, 20, 159-171.

Moreno, L., Azcón, A., Navarrete, P., Garrido, E., 1997. Caracterización geológica e hidroquímica de las surgencias con influencia termal en los macizos graníticos de la zona axial pirenaica. Soria, VII Congreso de Geoquímica de España, 392-399.

Ninot, J.M., Ferré, A., 2008. Plant diversity across five vegetation belts in the Pyrenees (Catalonia, Spain). Collectanea Botanica (Barcelona), 27, 65-74.

Oyarzún, R., Barrera, F., Salazar, P., Maturana, H., Oyarzún, J., Aguirre, E., Alvarez, P., Jourde, H., Kretschmer, N., 2014.

Multimethod assessment of connectivity between surface water and shallow groundwater: the case of Limarí River basin, north-central Chile. Hydrogeology Journal, 22, 1857-1873.

Parkhurst, D.L., Appelo, C.A.J., 1999. User’s Guide to PHREEQC (Version 2), a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, WaterResources Investigations Report, 99-4259.

Sanjuan, B., Michard, A., Michard, G., 1988. Influence of the temperature of CO2-rich springs on their Al and REE contents. Chemical Geology, 68, 57-67.

Savage, D., 2011. A review of analogues of alkaline alteration with regard to long-term barrier performance. Mineralogical Magazine, 75, 2401-2418.

Soulé, J.C., 1990. Circulations profondes en milieu granitique: eaux sulfurées des Pyrénées. Hydrogeologie, 4, 297-299.

Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review, 38, 55-94.

Todorovic, B.Z., Stojilkovic, D.T., Petrovic Pantic, T., Mitic, N.C., Nikolic, L.S., Cakic, S., 2016. Hydrochemistry and aragonite scaling in the Sijarinska spa (Serbia). Carbonates and Evaporites, 31, 367-374.

Van Manen, S.M., Wallin, E., 2012. Ground temperature profiles and thermal rock properties at Wairakei, New Zealand. Renew Energy, 43, 313-321.

Van Middlesworth, P.E., Wood, S.A., 1998. The aqueous geochemistry of the rare earth elements and yttrium. Part 7. REE, Th and U contents in thermal springs associated with the Idaho Batholith. Applied Geochemistry, 13, 861-884.

Vilaplana, J.M., 1983. Quaternary glacial geology of Alta Ribargorça basin (Central Southern Pyrenees). Acta Geológica Hispánica, 18(3-4), 217-233.

Vinchon, C., 1977. Contribution à l’étude pétrographique du Silurien des Pyrénées centrales espagnoles (région du Rio Esera, Province de Huesca et région de Llavorsi, Province de Lerida). D.E.A., Lille University, 172pp.

Zandvliet, J., 1960. The geology of the Upper Salat and Pallaresa valleys, Central Pyrenees, France/Spain 1/20.000. Leidsche Geologische Mededelingen, 25, 1-127.

Zwart, H.J., 1977. Six cross sections through the Central Pyrenees, 1/50.000. Geological Institute, Leiden University.

Zwart, H.J., 1979. The Geology of the Central Pyrenees. Leidsche Geologische Mededelingen, 50, 1-74.

Zwart, H.J., Roberti, K.F., 1976. Geological map of the Central Pyrenees. 1:50.000. Sheet 9, Flamisell-Pallaresa. Geological Institute, Leiden University.

Downloads

Published

2017-06-13

Issue

Section

Articles