Phase relations in the Cabeza de Araya cordierite monzogranite, Iberian Massif: implications for the formation of cordierite in a crystal mush

Authors

  • O. GARCÍA MORENO Departmento de Geología, Universidad de Oviedo C/ Jesús Arias de Velasco s/n. 33005, Oviedo, Spain Centro de Investigación en Nanomateriales y Nanotecnología (CINN) – Consejo Superior de Investigaciones Científicas (CSIC) Universidad de Oviedo (UO) Avda. de la Vega, 4-6, 33940 El Entrego, Asturias, Spain
  • L.G. CORRETGÉ Departmento de Geología, Universidad de Oviedo C/ Jesús Arias de Velasco s/n. 33005, Oviedo, Spain
  • F. HOLTZ Leibniz Universität Hannover, Institut für Mineralogie Callinstraat 3, D-30167 Hannover, Germany
  • M. GARCÍA-ARIAS Departmento de Geociencias, Universidad de Los Andes Carrera 1 # 18A-1, Bogotá, Colombia
  • C. RODRÍGUEZ Departmento de Ciencias de la Tierra. Facultad de Ciencias Experimentales, Universidad de Huelva Campus del Carmen, 21071 Huelva, Spain

DOI:

https://doi.org/10.1344/GeologicaActa2017.15.4.6

Keywords:

Cordierite, Monzogranites, Experimental petrology, Peritectic, Perple_X.

Abstract

Experimental investigations and thermodynamic calculations of the phase relations of a cordierite-rich monzogranite from the Cabeza de Araya batholith (Cáceres, Spain) have been performed to understand the formation of cordierite. The experiments failed to crystallize cordierite in the pressure range 200-600MPa, in the temperature range 700-975ºC and for different water activities (melt water contents between 2 and 6 wt.%). In contrast, clinopyroxene and orthopyroxene (absent in the natural mineral rock assemblage), together with biotite, were observed as ferromagnesian assemblage in a wide range of experimental conditions. Thermodynamic calculations, using the software PERPLE_X, describe the formation of cordierite only at 200 and 400MPa and very low water contents, and the amount of cordierite formed in the models is always below 3.5 vol.%. The results indicate that cordierite is not in equilibrium with the bulk rock compositions. The most probable explanation was that cordierite nucleated and crystallized from a melt that is not in equilibrium with part of the mineral assemblage present in the magma. This “non-reactive” mineral assemblage was mainly composed of plagioclase. The silicate melts from which cordierite crystallized was more Al-rich and K-rich than the silicate melt composition in equilibrium with the bulk composition. One possible process for the high Al content of the silicate melt is related to assimilation and partial melting of Al-rich metasediments. An exo-perictetic reaction is assumed to account for both textural and geochemical observations. On the other hand, hybridization processes typical for calc-alkaline series can also explain the high proportions of “non-reactive” minerals observed in relatively high temperature magmas. This study clearly demonstrates that silicate melts in a crystal mush can depart significantly from the composition of melt that should be in equilibrium with the bulk solid assemblage.

References

Almeev, R., Bolte, T., Nash, B., Holtz, F., Erdmann, M., Cathey, H., 2012. High temperature, low H2O silicic magmas of the Yellowstone hotspot: an experimental study of rhyolite from the Bruneau-Jarbidge eruptive center. Journal of Petrology, 53,

-1866.

Amice, M., 1990. Le complexe granitique de Cabeza de Araya (Estrémadure, Espagne): zonation, structures magmatiques et magnétiques, géométrie, discussion du mode de mise en place. PhD Thesis, Toulouse, Université de Toulouse III, 225pp.

Amice, M., Bouchez, J.L., Aranguren, A., Alvarez, F., Vigneresse, J.L., 1991. El batolito granítico de Cabeza de Araya (Extremadura): comparación de sus estructuras magmáticas y magnéticas. Boletín Geológico y Minero, 102(3), 455-471.

Audrain, J., Amice, M., Vigneresse, J.L., Bouchez, J.L., 1989. Gravimetrie et geometrie tri-dimensionelle du pluton granitique

de Cabeza de Araya (Estremadure, Espagne). Comptes Rendus de l’ Académie des Sciences de Paris, Série II, 309, 1757–1764.

Bachmann, O., Dungan, M.A., Lipman, P.W., 2002. The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper-crustal batholith. Journal of Petrology, 43(8), 1469-1503.

Barbey, P., Marignac, C., Montel, J.M., Macaudière, J., Gasquet, D., Jabbori, J., 1999. Cordierite growth texture and conditions

of genesis and emplacement of crustal granitic magmas: the Velay Grante Complex (Massif Central, France). Journal of

Petrology, 40, 1425-1441.

Bea, F., 2004. La naturaleza del magmatismo de la Zona Centro Ibérica: consideraciones generales y ensayo de correlación.

In: Vera, J.A. (ed.). Geología de España, Sociedad Geográfica Española - Instituto Geológico y Minero de España (SGEIGME), Madrid, 128-133.

Botcharnikov, R.E., Koepke, J., Holtz, F., McCammon, C., Wilke, M., 2005. The effect of water activity on the oxidation and

structural state of Fe in a ferro-basaltic melt. Geochimica et Cosmochimica Acta, 69(21), 5071-5085.

Capdevila, R., 1969. Le métamorphisme régional progressif et les granites dans le segment hercynien de Galice Nord Orientale (NW de l’Espagne). PhD Thesis, Montpellier, Université de Montpellier, 430 pp.

Capdevila, R., Corretgé, L.G., Floor, P., 1973. Les granitoïdes varisques de la Meseta ibérique. Bulletin de la Societé Geológique de France, (7) XV (3-4), 209-228.

Carracedo, M., Gil Ibarguchi, J.I., García de Madinabeitia, S., Berrocal, T., 2005. Geocronología de los granitoides hercínicos de la Serie Mixta: Edad U-Th-Pbtotal de monacitas del Plutón de Cabeza de Araya (Zona Centroibérica) y de las manifestaciones filonianas asociadas. Revista de la Sociedad Geológica de España, 18(1-2), 77-88.

Carracedo, M., Paquette, J.L., Alonso Olazabal, A., Santos Zalduegui. J.F., de García de Madinabeitia, S., Tiepolo, M., Gil Ibarguchi, J.I., 2009. U-Pb dating of granodiorite and granite units of the Los Pedroches batholith. Implications for geodynamic models of the southern Central Iberian Zone (Iberian Massif). International Journal of Earth Sciences (Geologische Rundschau), 98(7), 1609-1624.

Carrington, D.P., Harley, S.L., 1995. Partial melting and phase relations in high-grade metapelites: an experimental petrogenetic grid in the KFMASH system. Contributions to Mineralogy and Petrology, 120, 270-291.

Carroll, M.R., Wyllie, P.J., 1990. The system tonalite-H2O at 15kbar and the genesis of calc-alkaline magmas. American Mineralogist, 75, 345-357.

Castro, A., 1984. Los granitoides y la estructura hercínica de Extremadura Central. PhD Thesis, Salamanca, Universidad

de Salamanca, 202pp.

Castro, A., 1985. The Central Extremadura Batholith: Geotectonic implications (European Hercynian belt)-An outline. Tectonophysics, 120, 57-68.

Castro, A., Patiño, E., Corretgé, L.G., de la Rosa, J., El-Biad, M., El-Hmidi, H., 1999. Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis. Contributions to Mineralogy and Petrology, 135, 255-276.

Clarke, D.B., 1995. Cordierite in felsic igneous rocks: a synthesis. Mineralogical Magazine, 59, 311-325.

Clemens, J.D., Wall, V.J., 1981. Origin and crystallization of some peraluminous (S-type) granitic magmas. Canadian Mineralogist, 19, 111-131.

Clemens, J.D., Holloway, J.R., White, A.J.R., 1986. Origin of an A-type granite: experimental constraints. American Mineralogist, 71, 317-324.

Connolly, J.A.D., 1990. Multivariable phase diagrams: an algorithm based on generalized thermodynamics. American Journal of Science, 290(6), 666-718.

Connolly, J.A.D., 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236(1-2), 524-541.

Connolly, J.A.D., 2009. The geodynamic equation of state: What and how. Geochemistry, Geophysics, Geosystems, 10(10),

Q10014, 19pp.

Connolly, J.A.D., Petrini, K., 2002. An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. Journal of Metamorphic Geology, 20(7), 697-708.

Corretgé, L.G., 1971. Estudio petrológico del Batolito de Cabeza de Araya (Cáceres). PhD Thesis, Salamanca, Universidad de Salamanca, 453pp.

Corretgé, L.G., Suárez, O., 1994. A garnet-cordierite granite porphyry containing rapakivi feldspars in the Cabeza de Araya batholith (Extremadura, Spanish Hercynian belt). Mineralogy and Petrology, 50(1-3), 97-111.

Corretgé, L.G., Ugidos, J.M., Martínez, F.J., 1977. Les séries granitiques varisques du secteur centre-occidental espagnol. Collaborations internationales. CNRS, Rennes, 243, 453-461.

Corretgé, L.G., Bea, F., Suárez, O., 1985. Las características geoquímicas del Batolito de Cabeza de Araya (Cáceres, España): implicaciones petrogenéticas. Trabajos de Geología, 15, 219-238.

Corretgé, L.G., Castro, A., El-Hmidi, H., García-Moreno, O., 2001. Characteristics and significance of the experimental products from partial melting of rocks from the “Complejo Esquisto grauváquico” at 3.5kbar. In: III Congreso Ibérico de Geoquímica, VIII Congreso de Geoquímica de España, Zaragoza, 191-196pp.

Corretgé, L.G., Castro, A., García-Moreno, O. 2004. Granitoides de la “serie mixta”. In: Vera, J.A. (ed.). Geología de España, Sociedad Geológica Española-Instituto Geológico y Minero de España, Madrid, 115-116.

Dall’agnol, R., Scaillet, B., Pichavant, M., 1999. An experimental study of a lower proterozoic A-type granite from the Eastern

Amazonian Craton, Brazil. Journal of Petrology, 40(11), 1673-1698.

Díaz-Alvarado, J., Castro, A., Fernández, C., Moreno-Ventas, I., 2011. Assessing Bulk Assimilation in Cordieritebearing Granitoids from the Central System Batholith, Spain; Experimental, Geochemical and Geochronological Constraints. Journal of Petrology, 52(2), 223-256.

Diener, J.F.A., Powell, R., White, R.W., Holland, T.J.B., 2007. A new thermodynamic model for clino- and orthoamphiboles

in the system Na2O-CaO- FeO-MgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25, 631-656.

Erdmann, S., London, D., Morgan Vi, G.B., Clarke, D.B., 2007. The contamination of granitic magma by metasedimentary

country-rock material: An experimental study. Canadian Mineralogist, 45(1), 43-61.

Fuhrman, M.L., Lindsley, D.H., 1988. Ternary-feldspar modelling and thermometry. American Mineralogist, 73, 201-215.

García-Moreno, O., 2004. Estudio experimental de las relaciones texturales y de fases en granitos peralumínicos de la serie mixta del Macizo Ibérico. El caso de Cabeza de Araya (Cáceres). PhD Thesis. Oviedo, Universidad de Oviedo, 248pp.

García-Moreno, O., Castro, A., Corretgé, L.G., El-Hmidi, H., 2006. Dissolution of tonalitic enclaves in ascending hydrous

granitic magmas: An experimental study. Lithos, 89(3-4), 245-258.

García-Moreno, O., Corretgé, L.G., Castro, A., 2007. Processes of assimilation in the genesis of cordierite leucomonzogranites from the Iberian massif: A short review. Canadian Mineralogist, 45(1), 71-85.

Green, T.H.,1976. Experimental generation of cordierite- or garnet-bearing granitic liquids from a pelitic composition. Geology, 4, 85-88.

Hall, A., Pereira, M.D., Bea, F., 1996. The abundance of ammonium in the granites of central Spain, and the behaviour of the ammonium ion during anatexis and fractional crystallization. Mineralogy and Petrology 56(1-2):105-123.

Harley, S.L., Carrington, D.P., 2001. The distribution of H2O between cordierite and granitic melt: H2O incorporation in cordierite and its application to high-grade metamorphism and crustal anatexis. Journal of Petrology 42(9):1595-1620.

Hensen, B.J., 1986. Theoretical phase relations involving cordierite and garnet revisited: the influence of oxygen fugacity on the stability of sapphirine and spinel in the system Mg-Fe-Al-Si-O. Contributions to Mineralogy and Petrology, 92(3), 362-367.

Hoffer, E., Grant, J.A., 1980. Experimental investigations of the formation of Cordierite-Orthopyroxene parageneses in pelitic rocks. Contributions to Mineralogy and Petrology, 73, 15-22.

Holland, T.J.B., Powell, R., 1996. Thermodynamics of orderdisorder in minerals. 2. Symmetric formalism applied to solid

solutions. American Mineralogist, 81, 1425-1437.

Holland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309-343.

Holland, T.J.B., Powell, R., 2001. Calculation of phase relations involving haplogranitic melts using an internally consistent

thermodynamic dataset. Journal of Petrology, 42, 673-683.

Holtz, F., Johannes, W., 1991. Genesis of peraluminous granites. I. Experimental investigation of melt composition at 3 and

kbar and various H2O activities. Journal of Petrology, 32(5), 935-958.

Holtz, F., Behrens, H., Dingwell, D.B., Johannes, W., 1995. H2O solubility in haplogranitic melts: compositional, pressure and temperature dependence. American Mineralogist, 80, 94-108.

Huang, W.L., Wyllie, P.J., 1973. Melting Relations of MuscoviteGranite to 35kbar as a Model for Fusion of Metamorphosed

Subducted Oceanic Sediments. Contributions to Mineralogy and Petrology, 42, 1-14.

Huang, W., Wyllie, P.J., 1986. Phase relations of gabbro-tonalitegranite-water at 15kbar with applications to differentiation

and anatexis. American Mineralogist, 71, 301-316.

Johannes, W., Holtz, F., 1996. Petrogenesis and experimental petrology of granitic rocks, Springer Verlag, New York, 335pp.

Kalt, A., Altherr, R., Ludwig, T., 1998. Contact Metamorphism in Pelitic Rocks on Island of Kos (Greece, Eastern Aegean Sea): a Test for the Na-in Cordierite Thermometer. Journal of Petrology, 39(4), 663-688.

Klimm, K., Holtz, F., Johannes, W., King, P.L., 2003. Fractionation of metaluminous A-type granites: An experimental study of

the Wangrah Suite, Lachlan Fold Belt, Australia. Precambrian Research, 124(2-4), 327-341.

Lagarde, J.L., Capdevila, R., Fourcade, S., 1992. Granites et collision: l’exemple des granitoides carboniferes dans la chaine hercynienne ouest-europeenne. Bull. Soc. geol. France, 163(5), 597-610.

López, S., Castro, A., García-Casco, A., 2005. Production of granodiorite melt by interaction between hydrous mafic magma and tonalitic crust. Experimental constraints and implications for the generation of Archaean TTG complexes. Lithos, 79, 229-250.

Maas, R., Nicholls, I.A., Legg, C., 1997. Igneous and metamorphic enclaves in the S-type Deddick Granodiorite, Lachlan fold belt, SE Australia: Petrographic, geochemical and Nd-Sr isotopic evidence for crustal melting and magma mixing. Journal of Petrology, 38(7), 815-841.

Martínez, F.J., 1974. Estudio petrológico de la parte occidental de la provincia de Salamanca. Trabajos de Geología, 7, 125.

Moore, G., Vennemann, T., Carmichael, I.S.E., 1998. An empirical model for the solubility of H2O in magmas to 3kbar. American Mineralogist, 83, 36-42.

Nakada, S., Motomura, Y., 1999. Petrology of the 1991–1995 eruption at Unzen: effusion pulsation and groundmass crystallization. Journal of Volcanology and Geothermal Research, 89, 173-196.

Nakamura, M., 1995. Continuous mixing of crystal mush and replenished magma in the ongoing Unzen eruption. Geology,

, 807-810.

Naney, M.T., 1983. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. American Journal of Science, 283, 993-1033.

Naney, M.T., Swanson, S.E., 1980. The effect of Fe and Mg on crystallization in granitic systems. American Mineralogist, 65, 639-653.

Oen, I.S., 1958. The geology, petrology and ore deposits of the Viseu region, Northern Portugal. Communicaçoes dos Serviços Geologicos de Portugal, 41, 5-199.

Oen, I.S., 1970. Granite intrusion, folding and metamorphism in central northern Portugal. Boletín Geológico y Minero, 81, 271- 298.

Parmigiani, A., Huber, C., Bachmann, O., 2014. Mush microphysics and the reactivation of crystal-rich magma reservoirs. Journal of Geophysical Research, Solid Earth, 9(8), 6308-6322.

Patiño Douce, A.E., Beard, J.S., 1994. H2O loss from hydrous melts during fluid-absent piston cylinder experiments. American Mineralogist, 79, 585-588.

Patiño Douce, A.E., Beard, J.S., 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15kbar. Journal of Petrology, 36(3), 707-738.

Pereira, M.D., Bea, F., 1994. Cordierite-producing reactions in the Peña Negra complex, Avila Batholith, Central Spain: The

key role of cordierite in low-pressure anatexis. The Canadian Mineralogist, 32, 763-780.

Pichavant, M., Costa, F., Burgisser, A., Scaillet, B., Martel, C., Poussineau, S., 2007. Equilibration scales in silicic to intermediate magmas - Implications for experimental studies. Journal of Petrology, 48(10), 1955-1972.

Powell, R., Holland, T.J.B., 1999. Relating formulations of the thermodynamics of mineral solid solutions: Activity modelling

of pyroxenes, amphiboles, and micas. American Mineralogist, 84, 1-14.

Puziewicz, J., Johannes, W., 1988. Phase equilibria and compositions of Fe-Mg-Al minerals and melts in watersaturated peraluminous granitic systems. Contributions to Mineralogy and Petrology, 100, 156-168.

Rapela, C.W., Baldo, E.G., Pankhurst, R.J., Saavedra, J., 2002. Cordierite and leucogranite formation during emplacement of

highly peraluminous magma: the El Pilón Granite Complex (Sierras Pampeanas, Argentina). Journal of Petrology, 43(6),

-1028.

René, M., Holtz, F., Luo, C., Beermann, O., Stelling, J., 2008. Biotite stability in peraluminous granitic melts: Compositional

dependence and application to the generation of two-mica granites in the South Bohemian batholith (Bohemian Massif,

Czech Republic). Lithos, 102(3-4), 538-553.

Rubio-Ordóñez, A., García-Moreno, O., Montero, P., Bea, F., 2016. New data on the chronology of Cabeza de Araya Granites,

(Cáceres). Geo-Temas, 16(2) 43-46.

Sandeman, H.A., Clark, A.H., 2003. Glass-rich, cordierite-biotite rhyodacite, Valle Ninahuisa, Puno, SE Peru: Petrological

evidence for hybridization of ‘Lachlan S-typpe’ and potassic mafic magmas. Journal of Petrology, 44(2), 355-385.

Scaillet, B., Pichavant, M., Roux, J., 1995. Experimental crystallization of leucogranite magmas. Journal of Petrology, 36(3), 663-705.

Scaillet, B., Holtz, F., Pichavant, M., 2016. Experimental constraints on the formation of silicic magmas. Elements, 12, 109-114.

Schermerhorn, L.J.G., 1959. Igneous, metamorphic and ore geology of the Castro Daire-Sao Pedro do Sul-Sátao region (Northern Portugal). PhD Thesis, Amsterdam, University of Amsterdam, 517pp.

Schmidt, M.W., 1996. Experimental constraints on recycling of potassium from subducted oceanic crust. Science, 272, 1927-

Schreyer, W., Maresch, W.V., Daniels, P., Wolfsdorff, P., 1990. Potassic cordierites: characteristic minerals for hightemperature, very low-pressure environments. Contributions to Mineralogy and Petrology, 105(2), 162-172.

Speer, J.A., 1981. Petrology of cordierite- and almandine-bearing granitoid plutons of the southern Appalachian piedmont,

U.S.A. Canadian Mineralogist, 19(1), 35-46.

Stern, C. R., Wyllie, P. J., 1981. Phase relationships of I-type granites with H2O to 35 kbar: the Dinkey Lakes biotite-granite from the Sierra Nevada batholith. Journal of Geophysical Research, 86(b11), 10412-10422.

Tajcmanova, L., Connolly, J.A.D., Cesare, B., 2009. A thermodynamic model for titanium and ferric iron solution in biotite. Journal of Metamorphic Geology, 27, 153-165.

Takahashi, M., Aramaki, S., Ishihara, S., 1980. Magnetite-series/Ilmenite-series vs. I-type/S-type granitoids. Mining Geology,

Special Issue, 8, 13-28.

Tsuchiyama, A., 1983. Crystallization kinetics in the system CaMgSi2O6-CaAl2Si2O8: the delay in nucleation of diopside

and anorthite. American Mineralogist, 68, 687-698.

Tsuchiyama, A., 1985. Crystallization kinetics in the system CaMgSi2O6-CaAl2Si2O8: development of zoning and kinetics

effects on element partitioning. American Mineralogist, 70, 474-486.

Ugidos, J.M., Recio, C., 1993. Origin of cordierite-bearing granites by assimilation in the Central Iberian Massif (CIM), Spain. Chemical Geology, 103, 27-43.

Ugidos, J.M., Stephens, W.E., Carnicero, A., Ellam, R.M., 2008. A reactive assimilation model for regional-scale cordieritebearing granitoids: geochemical evidence from the Late Variscan granites of the Central Iberian Zone, Spain. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 99(3-4), 225-250.

Vielzeuf, D., Montel, J.M., 1994. Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contributions to Mineralogy and Petrology, 117, 375-393.

Vigneresse, J.L., Bouchez, J.L., 1997. Successive Granitic Magma Batches During Pluton Emplacement: The Case of Cabeza de Araya (Spain). Journal of Petrology, 38(12), 1767-1776.

White, R.W., Powell, R., Holland, T.J.B., Worley, B.A., 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-

SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18, 497-511.

White, R.W., Powell, R., Holland, T.J.B., 2001. Calculation of partial melting equilibria in the system Na2O-CaO-K2OFeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19, 139-153.

White, R.W., Powell, R., Clarke, G.L., 2002. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 20, 41-55.

White, R.W., Powell, R., Holland, T.J.B., 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology, 25, 511-527.

White, R.W., Stevens, G., Johnson, T.E., 2011. Is the crucible reproducible? Reconciling melting experiments with thermodynamic calculations. Elements, 7, 239-244.

Zeck, H.P., 1992. Restite-melt and mafic-felsic magma mixing and mingling in a S-type dacite, Cerro del Hoyazo, SE Spain. Transations of the Royal Society of Edinburgh: Earth Sciences, 83, 139-144.

Zeh, A., Holland, T.J.B., Klemd, R., 2005. Phase relationships in grunerite–garnet-bearing amphibolites in the system CFMASH, with applications to metamorphic rocks from the Central Zone of the Limpopo Belt, South Africa. Journal of

Metamorphic Geology, 23, 1-17.

Downloads

Published

2017-11-14

Issue

Section

Granites and Related Rocks. A tribute to Guillermo Corretgé