Magnetic susceptibility of Variscan granite-types of the Spanish Central System and the redox state of magma

Authors

  • C. VILLASECA Dpto. Petrología y Geoquímica, Facultad C.C. Geológicas, Universidad Complutense Madrid. Instituto de Geociencias (IGEO) (Universidad Complutense de Madrid, CSiC) Madrid, Spain.
  • V.C. RUIZ-MARTÍNEZ Dpto. Física de la tierra AAI, Facultad CC Físicas, universidad Complutense Madrid, Spain.
  • C. PÉREZ-SOBA Dpto. Petrología y Geoquímica, Facultad C.C. Geológicas, Universidad Complutense, Madrid.

DOI:

https://doi.org/10.1344/GeologicaActa2017.15.4.8

Keywords:

Magnetic susceptibility, Granite type, Biotite chemistry, Oxygen fugacity.

Abstract

Magnetic susceptibility (MS) has been measured in Variscan granites from central Spain. They yield values in the order of 15 to 180μSI units for S- and I-type granites, indicating that both types belong to the ilmenite series. Only samples from magnetite-bearing leucogranites from the I-type La Pedriza massif show high MS values, in the order of 500-1400μSI, reflecting the presence of this ferromagnetic mineral. Mineral chemistry of magmatic Fe-rich minerals (mainly biotite) suggests similar oxidation values for both granite types. MS values change in highly fractionated granites accordingly either with the presence of rare new Fe-oxide phases (some I-type leucogranites) or with the marked modal amount decrease of Fe-rich minerals (I- and S-type leucogranites). The redox state in highly fractionated granite melts is mostly controlled by magmatic processes that modify redox conditions inherited from the source region. Thus, the occurrence of magnetite or ilmenite in granites is primarily controlled by the oxidation state of the source material but also by the differentiation degree of the granite melt. The presence of magnetite in some Variscan I-type leucogranites might be a consequence of crystal fractionation processes in a more limited mafic mineral assemblage than in S-type granite melts.

References

Andonaegui, P., 1990. Geoquímica y geocronología de los granitoides del sur de Toledo. PhD Thesis, Universidad Complutense de Madrid, 357pp.

Aydin, A., Ferré, E.C., Aslan, Z., 2007. The magnetic susceptibility of granitic rocks as a proxy for geochemical composition: Example from the Saruhan granitoids, NE Turkey. Tectonophysics, 441, 85-95.

Bea, F., Montero, P., Molina, J.F., 1999. Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila batholith; a model for the generation of Variscan batholiths in Iberia. Journal of Geology, 107, 399-419.

Bea, F., Montero, P., Zinger, T., 2003. The nature, origin, and thermal influence of the granite source layer of Central Iberia. Journal of Geology, 111, 579-595.

Bellido, F., 1979. Estudio petrológico y geoquímico del plutón granítico de La Cabrera (Madrid). PhD Thesis, Universidad Complutense de Madrid, 331pp.

Best, M., 2003. Igneous and metamorphic petrology (2nd ed.). Blackwell Publishing, 832pp.

Bónová, K., Broska, I., Petrík, I., 2010. Biotite from Čierna hora Mountains granitoids (Western Carpathians, Slovakia) and

estimation of water contents in granitoid melts. Geologica Carpathica, 61, 3-17.

Bruiyn, H. de, Van Der Westhuizen, W.A., Schoch, A.E., 1983. The estimation of FeO, F and H2O+ by regression in microprobe analyses of natural biotite. Journal of Trace and Microprobe Techniques, 1, 399-413.

Buda, G., Koller, F., Kovács, J., Ulrych, J., 2004. Compositional variation of biotite from Variscan granitoids in Central Europe: A statistical evaluation. Acta Mineralogica-Petrographica, 45, 21-37.

Carmichael, I.S.E., 1991. The redox states of basic and silicic magmas: a reflection of their source regions? Contributions

to Mineralogy and Petrology, 106, 129-141.

Casillas, R., 1989. Las asociaciones plutónicas tardihercínicas del sector occidental de la Sierra de Guadarrama-Sistema Central Español (Las Navas del Marqués-San Martín de Valdeiglesias). Petrología, geoquímica, génesis y evolución. PhD Thesis, Universidad Complutense de Madrid, 316pp.

Castellón, T., 1995. Los plutones graníticos de Villacastín y La Granja (Sierra de Gudarrama): petrología, geoquímica y

geocronología Rb-Sr. MSc Thesis, Universidad Complutense de Madrid, 163pp.

Castiñeiras, P., Villaseca, C., Barbero, L., Martín Romera, C., 2008. SHRIMP U-Pb zircon dating of anatexis in high-grade

migmatite complexes of Central Spain: implications in the Hercynian evolution of Central Iberia. International Journal

of Earth Sciences, 97, 35-50.

Castro, A., Patiño Douce, A.E., Corretgé, L.G., de la Rosa, J.D., El-Biad, M., El-Hmidi, H., 1999. Origin of peraluminous granites and granodiorites, Iberian Massif, Spain. An experimental test to granite petrogenesis. Contributions to Mineralogy and Petrology, 135, 255-276.

Chicharro, E., 2015. Petrologic-metallogenic characterization of a specialized granite: the Logrosán stock (Cáceres). PhD

Thesis, Universidad Complutense de Madrid, 227pp.

Cuesta, A., 1991. Petrología granítica del plutón de Caldas de Reis (Pontevedra, España). Estructura, mineralogía, geoquímica y petrogénesis. Ediciós do Castro, serie Nova Terra 5, 363pp.

Czamanske, G.K., Wones, D.R., 1973. Oxidation during magmatic differentiation, Finnmarka complex, Oslo area, Norway: Part 2, The mafic silicates. Journal of Petrology, 14, 349-380.

Deer, W.A., Howie, R.A., Zussmann, J., 1962. Rock forming minerals: v.3, Sheet silicates. Longman, London, 270pp.

Díaz-Alvarado, J., Castro, A., Fernández, C., Moreno-Ventas, I., 2011. Assessing bulk assimilation in cordierite-bearing granitoids from the Central System Batholith, Spain; experimental, geochemical and geochronological constraints. Journal of Petrology, 52, 223-256.

Ellwood, B.B., Wenner, D.B., 1981. Correlation of magnetic susceptibility with 18O/16O data in late orogenic granites of the southern Appalachian Piedmont. Earth Planetary Science Letters, 54, 200-202.

Escuder-Viruete, J., Hernáiz, P.P., Valverde-Vaquero, P., Rodríguez, R., Dunning, G., 1998. Variscan syncollisional extension in the Iberian Massif: structural, metamorphic and geochronological evidence from the Somosierra sector of the Sierra de Guadarrama (Central Iberian Zone, Spain). Tectonophysics, 290, 87-109.

Eugercios, L., 1994. Petrología y geocronología Rb-Sr de plutones del sector central de la Sierra de Guadarrama (macizos de Alpedrete y de la Atalaya Real). MSc Thesis, Universidad Complutense de Madrid, 170pp.

Gleizes, G., Leblanc, D., Santana, V., Olivier, P., Bouchez, J.L., 1998. Sigmoidal structures featuring dextral shearing during

emplacement of the Hercynian granite complex of CauteretsPanticosa (Pyrenees). Journal of Structural Geology, 20, 1229-1245.

Gomes, M.E.P., Neiva, A.M.R., 2002. Petrogenesis of tin-bearing granites from Everdosa, Northern Portugal: The importance of magmatic processes. Chemie der Erde, 62, 47-72.

Gregorová, D., Hrouda, F., Kohút, M., 2003. Magnetic susceptibility and geochemistry of Variscan West Carpathian granites: implications for tectonic setting. Physics and Chemistry of the Earth, 28, 729-734.

Guidotti, C.V., Dyar, M.D., 1991. Ferric iron in metamorphic biotite and its petrologic and crystallochemical implications. American Mineralogist, 76, 161-175.

Guo, Z., Wilson, M., 2012. The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting. Gondwana Research, 22, 360-376.

Ishihara, S., 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27, 293-305.

Ishihara, S., 1990. The inner zone batholith vs. the outer zone batholith of Japan: Evaluation from their magnetic susceptibilities. The University Museum, The University of Tokyo, Nature and Culture, 2, 21-34.

Ishihara, S., Ulriksen, C.E., Sato, K., Terashima, S., Sato, T., Endo, Y., 1984. Plutonic rocks of north-central Chile. Bulletin

of the Geological Survey of Japan, 35, 503-536.

Ishihara, S., Hashimoto, M., Machida, M., 2000. Magnetite/ilmenite-series classification and magnetic susceptibility of the Mesozoic-Cenozoic batholiths in Peru. Resource Geology, 50, 123-129.

Kelley, K.A., Cottrell, E., 2012. The influence of magmatic differentiation on the oxidation state of Fe in basaltic arc magma. Earth and Planetary Science Letters, 329-330, 109-121.

Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist, 68, 277-279.

Linnen, R.L., Pichavant, M., Holtz, F., Burgess, S., 1995. The effect of fO2 on the solubility, diffusion, and speciation of tin in haplogranitic melts at 850ºC and 2kbar. Geochimica et Cosmochimica Acta, 59, 1579-1588.

Llorens, T., 2011. Las mineralizaciones magmático-hidrotermales de Sn-W-(Nb-Ta) del distrito de Navasfrías (SO de Salamanca). PhD Thesis, Universidad de Salamanca, 355pp.

Martins, H.C.B., Sant’Ovaia, H., Abreu, J., Oliveira, M., Noronha, F., 2011. Emplacement of the Lavadores granite (NW Portugal): U/Pb and AMS results. Comptes Rendus Geoscience, 343, 387-396.

Mendes, A.C., Dias, G., 2004. Mantle-like Sr-Nd isotope composition of Fe-K subalkaline granites: the Peneda-Gerês Variscan massif (NW Iberian Peninsula). Terra Nova, 16, 109-115.

Merino, E., 2014. Geochemistry, U-Pb geochronology and Hfisotope zircon composition of Variscan granitoids from the Montes de Toledo batholith. PhD Thesis, Universidad Complutense de Madrid, 291pp.

Merino, E., Villaseca, C., Orejana, D., Jeffries, T., 2013. Gahnite, chrysoberyl and beryl co-ocurrence as accessory minerals in

a highly evolved peraluminous pluton: The Belvís de Monroy leucogranite (Cáceres, Spain). Lithos, 179, 137-156.

Moreno-Ventas, I., Rogers, G., Castro, A., 1995. The role of hybridization in the genesis of the Hercynian granitoids in the Gredos Massif, Spain: inferences from Sr-Nd isotopes. Contributions to Mineralogy and Petrology, 120, 137-149.

Murata, M., Itaya, T., 1987. Sulfide and oxide minerals from S-type and I-type granitic rocks. Geochimica et Cosmochimica Acta, 51, 497-507.

Neiva, A.M.R., 1998. Geochemistry of highly peraluminous granites and their minerals between Douro and Tamega valleys, northern Portugal. Chemie der Erde, 58, 161-184.

Neuman, E.R., 1974. The distribution of Mn2+ and Fe2+ between ilmenites and magnetites in igneous rocks. American Journal of Science, 274, 1074-1088.

Orejana, D., Villaseca, C., Pérez-Soba, C., López-García, J.A., Billstrom, K., 2009. The Variscan gabbros from the Spanish Central System: A case for crustal recycling in the subcontinental lithospheric mantle? Lithos, 110, 262-276.

Orejana, D., Villaseca, C., Armstrong, R.A., Jeffries, T.E., 2011. Geochronology and trace element chemistry of zircon and garnet from granulite xenoliths: constraints on the tectonothermal evolution of the lower crust under central Spain. Lithos, 124, 103-116.

Orejana, D., Villaseca, C., Valverde-Vaquero, P., Belousova, E.A., Armstrong, R.A., 2012. U-Pb geochronology and zircon composition of late Variscan S- and I-type granitoids from the Spanish Central System. International Journal of Earth Sciences, 101, 1789-1815.

Ortega, L.A., Gil-Ibarguchi, J.I., 1990. The genesis of late hercynian granitoids from Galicia (Northwestern Spain) - inferences from REE studies. Journal of Geology, 98, 189-211.

Osborn, E.F., 1959. Role of oxygen pressure in the crystallization and differentiation of basaltic magma. American Journal of

Science, 257, 609-647.

Pérez-Soba, C., 1991. Petrología y geoquímica del macizo granítico de La Pedriza, Sistema Central Español. PhD Thesis, Universidad Complutense de Madrid, 225pp

Pérez-Soba, C., Villaseca, C., 2010. Petrogenesis of highly fractionated I-type peraluminous granites: La Pedriza pluton (Spanish Central System). Geologica Acta, 8, 131-149.

Pérez-Soba, C., Villaseca, C., Merino, E., 2013. Fluorapatite and childrenite-eosphorite in the peraluminous and perphosphorous Belvís de Monroy pluton (Spanish Variscan orogen). IX Congreso Ibérico de Geoquímica, Resúmenes, 31-34.

Pérez-Soba, C., Villaseca, C., Fernández, A., 2017. Magmatic graphite inclusions in Mn-Fe-rich fluorapatite of perphosphorous granites (the Belvís pluton, Variscan Iberian Belt). American Mineralogist, 102, 782-748.

Pichavant, M., Hammouda, T., Scaillet, B., 1996. Control of redox state and Sr isotopic composition of granitic magmas:

a critical evaluation of the role of source rocks. Transaction of the Royal Society Edinburgh: Earth Sciences, 88, 321-329.

Pitcher, W.S., 1993. The nature and origin of granite. Blackie Academic & Professional, London, 321pp.

Roda-Robles, E., Pesquera, A., Gil-Crespo, P.P., Vieira, R., Lima, A., Garate-Olave, I., Martins, T., Torres-Ruiz, J., 2016. Geology and mineralogy of Li mineralization in the Central Iberian Zone (Spain and Portugal). Mineralogical Magazine, 80, 103-126.

Sant’Ovaia, H., Martins, H., Noronha, F., 2013. Oxidized and reduced Portuguese Variscan granites associated with W and Sn hydrothermal lode deposits: magnetic susceptibility results. Comunicaçôes Geológicas, 100, 33-39.

Shabani, A.A.T., Lalonde, A.E., Whalen, J.B., 2003. Composition of biotite from granitic rocks of the canadian Appalachian orogen: a potential tectonomagmatic indicator? Canadian Mineralogist, 41, 1381-1396.

Silva, M.M.V., 2001. Origens de diferentes tipos de encraves que ocorrem em granitóides. Memorias da Academia das Ciências de Lisboa, 39, 97-119.

Silva, M.M.V., Neiva, A.M., 1998. Geoquímica de encraves microgranulares e granitos hospedeiros da regiao de Vila Nova de Gaia, norte Portugal. Comunicaçôes do Instituto Geológico e Mineiro, 84, 35-38.

Villaseca, C., Barbero, L., 1994. Chemical variability of Al-TiFe-Mg minerals in peraluminous granitoids from Central Spain. European Journal of Mineralogy, 6, 691-710.

Villaseca, C., Barbero, L., Rogers, G., 1998. Crustal origin of Hercynian peraluminous granitic batholiths of central Spain: petrological, geochemical and isotopic (Sr, Nd) arguments. Lithos, 43, 55-79.

Villaseca, C., Downes, H., Pin, C., Barbero, L., 1999. Nature and composition of the lower continental crust in central Spain

and the granulite-granite linkage: inferences from granulitic xenoliths. Journal of Petrology, 40, 1465-1496.

Villaseca, C., Herreros, V., 2000. A sustained felsic magmatic system: the Hercynian granitic batholith of the Spanish Central System. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91, 207-219.

Villaseca, C., Orejana, D., Paterson, B.A., Billström, K., PérezSoba, C., 2007. Metaluminous pyroxene-bearing granulite xenoliths from the lower continental crust in central Spain: their role in the genesis of Hercynian I-type granites. European Journal of Mineralogy, 19, 463-477.

Villaseca, C., Pérez-Soba, C., Merino, E., Orejana, D., LópezGarcía, J.A., Billstrom, K., 2008. Contrasting crustal sources for peraluminous granites of the segmented Montes de Toledo Batholith (Iberian Variscan Belt). Journal of Geosciences, 53,

-280.

Villaseca, C., Orejana, D., Belousova, E.A., 2012. Recycled metaigneous crustal sources for S- and I-type Variscan granitoids

from the Spanish Central System batholith: Constraints from Hf isotope zircon composition. Lithos, 153, 84-93.

Villaseca, C., Castiñeiras, P., Orejana, D., 2015. Early Ordovician metabasites from the Spanish Central System: A remnant of

intraplate HP rocks in the Central Iberian Zone. Gondwana Research, 27, 392-409.

Whalen, J.B., Chappell, B.W., 1988. Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of the Lachlan fold belt, southeast Australia. American Mineralogist, 73, 281-296.

Wones, D.R., Eugster, H.P., 1965. Stability of biotite: experiment, theory, and application. American Mineralogist, 50, 1228-

Zeck, H.P., Wingate, M.T.D., Pooley, G., 2007. Ion microprobe U–Pb zircon geochronology of a late tectonic granitic–gabbroic rock complex within the Hercynian Iberian belt. Geological Magazine, 144, 157-177.

Downloads

Published

2017-10-17

Issue

Section

Granites and Related Rocks. A tribute to Guillermo Corretgé