Spinels of Variscan olivine hornblendites related to the Montnegre granitoids revisited (NE Spain): petrogenetic evidence of mafic magma mixing

Authors

  • G. GALÁN Universitat Autònoma de Barcelona
  • P. ENRIQUE Universitat de Barcelona
  • L. BUTJOSA Universitat de Barcelona
  • M. FERNÁNDEZ-ROIG Universitat Autònoma de Barcelona

DOI:

https://doi.org/10.1344/GeologicaActa2017.15.4.5

Keywords:

Catalan Coastal Ranges, Olivine hornblendites, Spinel compositions, Mantle-derived melts.

Abstract

Olivine hornblendites (cortlandtites) form part of the Montnegre mafic complex related to late-Variscan I-type granitoids in the Catalan Coastal Ranges. Two generations of spinel are present in these hornblendites: Spl1 forms euhedral crystals included in both olivine and Spl2. Spl2 forms euhedral to anhedral crystals associated with phlogopite and fibrous colourless amphibole forming pseudomorphs after olivine. Compositions of Spl1 are picotite-Al chromite (Fe#: 77.78-66.60; Cr#: 30.12-52.22; Fe3+/R3+: 6.99-21.89; 0.10< TiO2%< 0.62). Compositions of Spl2 are pleonaste (Fe#: 37.86-52.12; Cr#: 1.00-15.45; Fe3+/R3+: 0.31-5.21; TiO2% <0.10%). The two types of spinel follow a CrAl trend, mainly due to the substitution (Fe2+)-1Cr-1= MgAl, which is interpreted as the result of mixing between two different mantle-derived melts. The compositions of early Spl1 crystals included in olivine are characteristic of Al-rich basalts. More aluminous Spl2 would result from reaction of olivine with a less evolved, Al and K-rich mantle-derived melt after new refilling of the magma chamber or channel. As a whole, spinels from similar examples of Variscan olivine hronblendites also follow a CrAl trend with high Fe# and starting at higher Cr# than other trends of this type. Cr# heterogeneity in the early spinels from these Variscan hornblendites would be inherited from the variable Al content of the mafic melts involved in their genesis.

Author Biographies

G. GALÁN, Universitat Autònoma de Barcelona

Departament de Geologia, Facultat de Ciències

P. ENRIQUE, Universitat de Barcelona

Departament de mineralogia, petrologia i geologia aplicada, Facultat de Ciències de la Terra

L. BUTJOSA, Universitat de Barcelona

Departament de mineralogia, petrologia i geologia aplicada, Facultat de Ciències de la Terra

M. FERNÁNDEZ-ROIG, Universitat Autònoma de Barcelona

Departament de Geologia, Facultat de Ciències

References

Allan, J.F., 1992. Cr-Spinel as petrogenetic indicator: deducing magma composition from spinels in highly altered basalts

from the Japan sea, sites 794 and 797. In: Tamaki, K., Suyehiro, K., Allan, J., McWilliams, M., et al. (eds.). Proceedings of the Ocean Drilling Program, Scientific Results, 127-128 (2), 837-846.

Allan, J.F., Sack, R.O., Batiza, R., 1998. Cr-rich spinels as petrogenetic indicators: MORB-type lavas from the Lamont seamount chain, eastern Pacific. American Mineralogist, 73, 741-753.

Arai, S., 1992. Chemistry of chromian spinel in voolcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine, 56, 173-184.

Arai, S., 1994. Characterization of spinel peridotites by olivinespinel compositional relationships: Review and interpretation.

Chemical Geology, 113, 191-204.

Arai, S., Okamura, H., Kadoshima, K., Tanaka, C., Suzuki, K., Ishimaru, S., 2011. Chemical characteristics of chromian spinel in plutonic rocks: Implications for deep magma processes and discrimination of tectonic setting. Island Arc, 20, 125-137.

Barnes, S.J., 1998. Chromite in komatiites, 1. Magmatic controls on crystallization and composition. Journal of Petrology, 39,

-1720.

Barnes, S.J., Roeder, P.L., 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 2279-2302.

Bea, F., 2004. La naturaleza del magmatismo de la Zona Centro Ibérica: consideraciones generales y ensayo de correlación. In: Vera, J.A. (ed.). Geología de España. Sociedad Geológica de España-Instituto Geológico y Minero de España, Madrid, 128-133.

Bea, F., Montero, P., Molina, J-F., 1999. Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila batholith: a model for the generation of Variscan batholiths in Iberia. The Journal of Geology, 107, 399-419.

Bea, F., Montero, P., González-Lodeiro, F., Talavera, C., Molina, J. F., Scarrow, J.H., Whitehouse, M.J. Zinger, T.F., 2006. Zircon thermometry and U-Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo Anatectic Complex, Central Iberia. Journal of the Geological Society, 163, 847-855.

Butjosa, L., Enrique, P., Galán, G., 2013. Las hornblenditas, gabros y dioritas del Macizo del Montnegre (Barcelona, Cordilleras Costero Catalanas). Geogaceta, 54, 35-38.

Castro, A., Corretgé, L.G., de la Rosa, J.D., Fernández, C., López, S., García-Moreno, O., Chacón, H., 2003. The appinitemigmatite complex of Sanabria, NW Iberian Massif, Spain. Journal of Petrology, 44, 1309-1344.

Chappel, B.W., White, A., 1974. Two contrasting granite types. Pacific Geology, 8, 173-174.

Condamine, P., Médard, E., 2014. Experimental melting of phlogopite-bearing mantle at 1GPa: Implication for potassic magmatism. Earth and Planetary Science Letters, 397, 80-92.

Del Moro, A., Enrique, P., 1996. Edad Rb-Sr mediante isocrona de minerales de las tonalitas biotítico-hornbléndicas del Macizo del Montnegre (Cordilleras Costero Catalanas). Geogaceta 20, 491-494.

Della-Pasqua, F.N., Kamanetsky, V.S., Gasparon, M., Crawford, A.J., Varne, R., 1995. Al-rich spinel in primitive arc volcanics.

Mineralogy and Petrology, 53, 1-26.

Dick, H.J.B., Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially

associated lavas. Contribution to Mineralogy and Petrology, 86, 54-76.

Enrique, P., 1983. Existencia de una asociación plutónica intermedia-máfica-ultramáfica de edad herciniana en el Macizo del Montnegre (Cordillera Litoral Catalana). Revista d’investigacions geològiques, 36, 25-38.

Enrique, P., 1985. La asociación plutónica tardi-hercínica del Macizo de Montnegre. Catalánides septentrionales (Barcelona). PhD Thesis, Universidad de Barcelona, Tomo 1, 329pp.

Enrique, P., 1990. The hercynian intrusive rocks of the Catalonian Coastal Ranges (NE Spain). Acta Geologica Hispanica, 25, 39-64.

Enrique, P., 2016. Composición komatiítica de las hornblenditas del Macizo del Montnegre (Sierra Litoral Catalana, NE de la

Península Ibérica). Geogaceta, 60, 103-106.

Enrique, P., Debon, F., 1987. Le pluton permian calcoalcalin de Montnègre (Chaînes Côtières Catalanes, Espagne): étude

isotopique Rb-Sr et comparaison avec les granites hercyniens de Pyrénées, Sardaigne et Corse. Comptes Rendus Académie

des Sciences, Paris, 305, Série II, 1157-1162.

Enrique, P., Galán, G., 1989. Las rocas ultramáficas del Macizo del Montnegre (Barcelona, NE de España): características

petrográficas, mineralógicas y geoquímicas. Boletín Geológico y Minero, 100(5), 897-916.

Enrique, P., Solé, J., 2004. El basamento ígneo. Las rocas intrusivas de la Cordillera Costero-Catalana. In: Vera, J.A. (ed.). Geología de España. Madrid, Sociedad Geológica de España; Instituto Geológico y Minero de España, 481-483.

Fernández-Roig, M., Galán, G., Mariani, E., 2017. Deformation and seismic anisotropy of the subcontinental lithospheric

mantle in NE Spain: EBSD data on xenoliths from the Catalan Volcanic Zone. Tectonophysics, 698, 16-37.

Fourcade, S., Allegre, J.C., 1981. Trace element behavior in granite genesis: A case study. The calc-alkaline plutonic association from the Quérigut complex (Pyrenees, France). Contributions to Mineralogy and Petrology, 76, 177-195.

Galán, G., 1987a. Las rocas graníticas del macizo de Vivero en el sector norte (Lugo, NO de España). Corpus Geologicum

Gallaeciae, 2ª serie, III. La Coruña, Fundación Pedro Barrié de la Maza, Conde de Fenosa, 376pp.

Galán, G., 1987b. Le massif hercynien de Vivero (NO de l’Espagne): une association de roches ultramafiques et de granites. Comparaison avec d’autres examples des orogens hercynien et caledonien. PhD Thesis, Université de Paris VI, 87-12, 406pp.

Galán, G., Suárez, O., 1989. Cortlandtitic enclaves associated with calc-alkaline granites from Tapia-Asturias (Hercynian

Belt, northwestern Spain). Lithos, 23, 233-245.

Galán, G., Oliveras, V., 2014. Melting and metasomatism in the lithospheric mantle of NE Spain: Geochemical and Sr-Nd

isotopic characteristics. Chemical Geology, 366, 75-89.

Galán, G., Pin, C., Duthou, J.L., 1997. Sr-Nd isotopic record of multi-stage interactions between mantle-derived magmas and

crustal components in a collision context-The ultramaficgranitoid association from Vivero (Hercynian belt, NW Spain). Chemical Geology, 131, 67-91.

Galán, G., Oliveras, V., Paterson, B.A., 2008. Types of metasomatism in mantle xenoliths in Neogene–Quaternary alkaline mafic lavas from Catalonia (NE Spain). In: Coltorti, M., Grégoire, M., (eds.). Metasomatism in oceanic and continental lithospheric mantle. London, Geological Society, Special Publication, 293, 121-153.

Galán, G., Oliveras, V., Paterson, B.A., 2011. Thermal and redox state of the subcontinental lithospheric mantle of NE Spain from thermobarometric data on mantle xenoliths. International Journal of Earth Sciences, 100, 81-106.

Henderson, P., Wood, R.J., 1981. Reaction relationships of chrome spinels in igneous rocks-further evidence from the layered intrusions of Rhum and Mull, Inner Hebrides, Scotland. Contributions to Mineralogy and Petrology, 78, 225-229.

Herzberg, C., 2004. Geodynamic information in peridotite petrology. Journal of Petrology, 45, 2507-2530.

Irvine, T.N., 1965. Chromian spinel as a petrogenetic indicator. Part I. Theory. Canadian Journal of Earth Sciences, 2, 648-672.

Irvine, T.N., 1967. Chromian spinel as a petrogenetic indicator. Part II. Petrologic applications. Canadian Journal of Earth

Sciences, 4, 71-103.

Kamenetsky, V.S., Crawford, A.J., Meffre, S., 2001. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42, 655-671.

Le Maitre, R.W., Bateman, P., Dudek, A., Keller J., Lameyre, J., Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R., Zanettin, B., 1989. A classification of igneous rocks and glossary of terms. Oxford, Blackwell, 193pp.

Leterrier, J., 1972. Étude pétrographique et géochimique du massif granitique de Quérigut (Ariège). PhD Thesis, Université de Nancy, 291pp.

Molina, J.F., Scarrow, J.H., Montero, P.G., Bea, F., 2009. HighTi amphibole as petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic-ultrabasic magmatism of Central Iberia. Contributions to Mineralogy and Petrology, 158, 69-98.

Molina, J.F., Montero, P., Bea, F., Scarrow, J.H., 2012. Anomalous xenocryst dispersion during tonalite-granodiorite crystal mush hybridization in the mid crust: mineralogical and geochemical evidence from Variscan appinites (Avila Batholith, Central Iberia). Lithos, 153, 224-242.

Montero, P., Bea, F., Zinger, T., 2004. Edad 207Pb/206Pb en cristal único de circón de las rocas máficas y ultramáficas del Sector de Gredos, Batolito de Ávila (Iberia Central). Revista de la Sociedad Geológica de España 17, 157-165.

Moreno-Ventas, I., Rogers, G., Castro, A., 1995. The role of hybridization in the genesis of Hercynian granitoids in the Gredos Massif, Spain: inferences from Sr-Nd isotopes. Contributions to Mineralogy and Petrology, 120, 137-149.

Murphy, J.B., 2013. Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma. Earth-Science Reviews, 119, 35-59.

Natland, J.W., 1982. Petrography and mineral compositions of gabbros recovered in deep sea drilling project Hole 453 on

the western side of the Marianna Trough. Initial Reports of the Deep Sea Drilling Project, 60, 579-599.

Nozaka, T., Meyer, R., Wintsch, R.P., Wathen, B., 2016. Hydrothermal spinel corundum and diaspore in lower oceanic crustal troctolites from the Hess Deep Rift. Contribution to Mineralogy and Petrology, 171, 53. DOI: 10.1007/s00410-016-1266-4.

Rickwood, P.C., 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22,

-263.

Riesco, M., Stüwe, K., Reche J., Martínez, F.J., 2004. Silica depleted melting of pelites. Petrogenetic grid and application to the Susqueda aureole, Spain. Journal of Metamorphic Geology, 22,475-494.

Roberts, M.P., Pin, C., Clemens, J.D., Paquette, J.L., 2000. Petrogenesis of mafic to felsic plutonic rock associations: the calc-alkaline Quérigut complex, French Pyrenees. Journal of Petrology, 41, 809-844.

Roeder, P.L., 1994. Chromite: from the fiery rain of chondrules to the Kilauea Iki lava lake. Canadian Mineralogist, 32, 729-

Roeder, P.L., Schulz, D.J., 2008. Crystallization of groundmass spinel in kimberlite. Journal of Petrology, 49, 1473-1495.

Roeder, P.L., Poustovetov, A., Oskarson, N., 2001. Growth forms and composition of chromian spinel in MORB magma: Diffusion-controlled crystallization of chromian spinel. Canadian Mineralogist, 39, 397-416.

Scarrow, J.H., Molina, J.F., Bea, F. Montero, P., 2009. Withinplate calc-alkaline rocks: Insights from alkaline mafic magmas-peraluminous crustal melt hybrid appinites of the Central Iberian Variscan continental collision. Lithos, 110, 50-64.

Scarrow, J.A., Molina, J.F., Bea, F., Montero, P., Vaughan A.P.M., 2011. Lamprophyre dikes as tectonic markers of late orogenic transtension timing and kinematics: A case study from the Central Iberian Zone. Tectonics, 30, 1-22.

Scowen, P.A.H., Roeder, P.L., Helz, R.T., 1991. Reequilibration of chromite within Kilauea Iki lava lake, Hawaii. Contributions

to Mineralogy and Petrology, 107, 8-20.

Solé, J., 1993. Le massif granitique du Montnegre (Sud de la Costa Brava, Catalogne). Étude pétrologique, géochimique et

géochronologique. PhD Thesis, Université de Genêve, 201pp.

Solé, J., Delaloye, M., Enrique, P., 1998. K-Ar ages in biotites and K-feldspars from the Catalan Coastal Batholith: Evidence of a post-Hercynian overprinting. Eclogae Geologicae Helvetiae, 91, 139-148.

Sisson,T.W., Grove, T.L., 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction

zone magmatism. Contributions to Mineralogy and Petrology, 113, 143-166.

Vilà, M., Pin, C., Enrique, P., Liesa, M., 2005. Telescoping of three distinct magmatic suites in an orogenic setting: Generation of Igneous rocks of the Albera Massif (Eastern Pyrenees). Lithos, 83, 97-127.

Voigt, M., Handt, A., 2011. Influence of subsolidus processes on the chromium number in spinel in ultramafic rocks. Contributions to Mineralogy and Petrology, 162, 675-689.

Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.

Downloads

Published

2017-11-22

Issue

Section

Granites and Related Rocks. A tribute to Guillermo Corretgé