Conductive structures around Las Cañadas caldera, Tenerife (Canary Islands, Spain): a structural control

Authors

  • N.P. COPPO Geomagnetism group, Department of Geology, University of Neuchâtel. CP 158, 2009 Neuchâtel, Switzerland
  • P. SCHNEGG Geomagnetism group, Department of Geology, University of Neuchâtel. CP 158, 2009 Neuchâtel, Switzerland
  • P. FALCO Geomagnetism group, Department of Geology, University of Neuchâtel. CP 158, 2009 Neuchâtel, Switzerland
  • R. COSTA Geomagnetism group, Department of Geology, University of Neuchâtel. CP 158, 2009 Neuchâtel, Switzerland

DOI:

https://doi.org/10.1344/105.000001516

Keywords:

Magnetotelluric method, Caldera, Hydrothermal alteration, Lateral collapse, Tenerife

Abstract

External eastern areas of the Las Cañadas caldera (LCC) of Tenerife (Canary Islands, Spain) have been investigated using the audiomagnetotelluric (AMT) method with the aim to characterize the physical rock properties at shallow depth and the thickness of a first resistive layer. Using the results of 50 AMT tensors carried out in the period range of 0.001 s to 0.3 s, this study provides six unpublished AMT profiles distributed in the upper Orotava valley and data from the Pedro Gil caldera (Dorsal Ridge). Showing obvious 1-D behaviour, soundings have been processed through 1-D modeling and gathered to form profiles. Underlying a resistive cover (150-2000 Ωm), a conductive layer at shallow depth (18-140 Ωm, 250-1100 m b.g.l.) which is characterized by a “wavy-like” structure, often parallel to the topography, appears in all profiles. This paper points out the ubiquitous existence in Tenerife of such a conductive layer, which is the consequence of two different processes: a) according to geological data, the enhanced conductivity of the flanks is interpreted as a plastic breccia within a clayish matrix generated during huge lateral collapse; and b) along main tectonic structures and inside calderas, this layer is formed by hydrothermal alteration processes. In both areas, the conductive layer is thought to be related to major structural volcanic events (flank or caldera collapse) and can be seen as a temporal marker of the island evolution. Moreover, its slope suggests possible headwall locations of the giant landslides that affected the flanks of Tenerife.

References

Abdel-Monem, A.N., Watkins, N., Gast, P., 1972. Potassium-argon ages, volcanic stratigraphy and geomagnetic polarity history of the Canary Islands: Tenerife, La Palma and Hierro. American Journal of Sciences, 272, 805-825.

Ablay, G.J., Marti, J., 2000. Stratigraphy, structure, and volcanic evolution of the Pico Teide-Pico Viejo formation, Tenerife, Canary Islands. Journal of Volcanology and Geothermal Research, 103, 175-208.

Aizawa, K., Yoshimura, R., Oshiman, N., Yamazaki, K., Uto, T., Ogawa, Y., Tank, S.B., Kanda, W., Sakanaka, S., Furukawa, Y., Hashimoto, T., Uyeshima, M., Ogawa, T., Shiozaki, I., Hurst, A.W., 2005. Hydrothermal system beneath Mt. Fuji volcano inferred from magnetotellurics and electric self-potential. Earth and Planetary Science Letters, 235, 343-355.

Ancochea, E., Huertas, M.J., Cantagrel, J.M., Coello, J., Fúster, J.M., Arnaud, N., Ibarrola, E., 1999. Evolution of the Cañadas edifice and its implications for the origin of the Cañadas Caldera (Tenerife, Canary Islands). Journal of Volcanology and Geothermal Research, 88, 177-199.

Ancochea, E., Fúster, J.M., Ibarrola, E., Cendrero, A., Coello, J., Hernán, F., Cantagrel, J.M., Jamond, C., 1990. Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. Journal of Volcanology and Geothermal Research, 44, 231-249.

Araña, V., 1971. Litologia y estructura del Edificio Cañadas, Tenerife (Islas Canarias). Estudios Geologicos, XXVII, 95-135.

Ballestracci, R., Nishida, Y., 1987. Fracturing associated with the 1977-1978 eruption of Usu volcano, north Japan, as revealed by geophysical measurements. Journal of Volcanology and Geothermal Research, 34, 107-121.

Benderitter, Y., Gérard, A., 1984. Geothermal study of Reunion island: audiomagnetotelluric survey. Journal of Volcanology and Geothermal Research, 20, 311-332.

Boubekraoui, S., Courteaud, M., Aubert, M.A., Y., Coudray, J., 1998. New insights into the hydrogeology of a basaltic shield volcano from comparison between self-potential and electromagnetic data: Piton de la Fournaise, Indian Ocean. Journal of Applied Geophysics, 40, 165-177.

Bravo, T., 1962. El Circo de Las Cañadas y sus dependencias. Boletín Real Sociedad Española de Historia Natural, 40, 93-108.

Cagniard, L., 1953. Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics, 18(3), 605-635.

Caloz, P., 1987. Galeries de captage d’eau sur l’île de Tenerife. Iles Canaries, Espagne. Etude des courbes de tarissements. Diploma Thesis. University of Neuchâtel, Switzerland, 67 pp.

Coello, J., 1973. Las series volcánicas de los subsuelos de Tenerife. Estudios Geológicos, 29(6), 491-512.

Coppo, N., Schnegg, P.-A., Falco, P., Costa, R., 2009. A deep scar in the flank of Tenerife (Canary Islands): Geophysical contribution to tsunami hazard assessment. Accepted for publication in Earth Planetary Science Letters. Doi: 10.1016/j.epsl.2009.03.017

Coppo, N., Schnegg, P.-A., Falco, P., Heise, W., Costa, R., 2007b. Multiple caldera collapses inferred from the shallow electrical resistivity signature of the Las Cañadas caldera, Tenerife, Canary Islands. Journal of Volcanology and Geothermal Research, 170(3-4), 153-166.

Courteaud, M., Ritz, M., Robineau, B., Join, J.-L., Coudray, J., 1997. New geological and hydrogeological implications of the resistivity distribution inferred from audiomagnetotellurics over La Fournaise young shield volcano (Reunion Island). Journal of Hydrology, 203, 93-100.

Descloitres, M., Ritz, M., Robineau, B., Courteaud, M., 1997. Electrical structure beneath the eastern collapsed flan of Piton de la Fournaise volcano, Reunion Island: Implications for the quest for groundwater. Water Resources Research, 33 (1), 13-19.

Filloux, J., 1987. Instrumentation and experimental methods for oceanic studies. In: Jacobs (ed.). Geomagnetism. London, Academic Press, vol. 1 (3rd edition), 143-248.

Fischer, G., Le Quang, B.V., 1981. Topography and minimization of standard deviation in one-dimensional magnetotelluric inversion scheme. Geophysical Journal Royal Astronomical Society, 67, 279-292.

Fuji-ta, K., Ogawa, Y., Ichiki, M., Yamaguchi, S., Makino, Y., 1999. Audio frequency magneto-telluric (AMT) survey of Norikura Volcano in central Japan. Journal of Volcanology and Geothermal Research, 90, 209-217.

Fúster, J.M., Araña, V., Brandle, J.L., Navarro, M., Alonso, U., Aparicio, A., 1968. Geología y vulcanología de las Islas Canarias, Tenerife. Madrid, Special publication Instituto Lucas Mallada del CSIC, 218 pp.

Galindo, I., 2005. Estructura volcano-tectónica y emisión difusa de gases de Tenerife (Islas Canarias). Doctoral Thesis. Barcelona (Spain), Universidad de Barcelona, 398 pp.

Galindo, I., Soriano, C., Martí, J., Pérez, N., 2005. Graben structure in the Las Cañadas edifice (Tenerife, Canary Islands): implications for active degassing and insights on the caldera formation. Journal of Volcanology and Geothermal Research, 144(1-4), 73-87.

Hernández, P., Pérez, N., Salazar, J., Reimer, M., Notsu, K., Wakita, H., 2003. Radon and helium in soil gases at Cañadas caldera, Tenerife, Canary Islands, Spain. Journal of Volcanology and Geothermal Research, 2721, 1-18.

Hürlimann, M., Marti, J., Ledesma, A., 2004. Morphological and geological aspects related to large slope failures on oceanic islands. The huge La Orotava landslide on Tenerife, Canary Islands. Geomorphology, 62(3-4), 143-158.

Ibarrola, E., Ancochea, E., Fúster, J.M., Cantagrel, J.M., Coello, J., Snelling, N.J., Huertas, M.J., 1993. Cronoestratigrafia del Macizo de Tigaiga: Evolución de un sector del edificio Cañadas (Tenerife, Islas Canarias). Boletín Real Sociedad Española de Historia Natural, 88(1-4), 57-72.

Krastel, S., Schmincke, H.-U., Jacobs, C.L., Rihm, R., Le Bas, T.P., Alibès, B., 2001. Submarine landslides around the Canary Islands. Journal of Geophysical Research, 106, 3977-3997.

Lipman, P.W., 2000. Caldera. In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. (eds.). Encyclopedia of Volcanoes. San Diego, Academic Press, 643-662.

Manzella, A., Volpi, G., Zaja, A., Meju, M., 2004. Combined TEM-MT investigation of shallow-depth resistivity structure of Mt Somma-Vesuvius. Journal of Volcanology and Geothermal Research, 131, 19-32.

Marti, J., 1998. Comment on “A giant landslide on the northern flank of Tenerife, Canary Island” by A. B. Watts and D.G. Masson. Journal of Geophysical Research, 103(B5), 9945-9947.

Marti, J., Gudmundsson, A., 2000. The Las Cañadas caldera (Tenerife, Canary Islands): an overlapping collapse caldera generated by magma-chamber migration. Journal of Volcanology and Geothermal Research, 103, 161-173.

Marti, J., Mitjavila, J., Araña, V., 1994. Stratigraphy, structure and geochronology of the Las Cañadas Caldera (Tenerife, Canary Islands). Geological Magazine, 131 (6), 715-727.

Marti, J., Hürlimann, M., Ablay, G.J., Gudmundsson, A., 1997. Vertical and lateral collapses on Tenerife (Canary Islands) and other volcanic oceanic islands. Geology, 25, 879-882.

Masson, D.G., Watts, A.B., Gee, M.J.R., Urgeles, R., Mitchell, N.C., Le Bas, T.P., Canales, M., 2002. Slope failures on the flanks of the western Canary Islands. Earth-Science Reviews, 57, 1-35.

Matsushima, N., Oshima, H., Ogawa, Y., Takakura, S., Satoh, H., Utsugi, M., Nishida, Y., 2001. Magma prospecting in Usu volcano, Hokkaido, Japan, using magnetotelluric soundings. Journal of Volcanology and Geothermal Research, 109, 263-277.

Monteiro Santos, F.A., Trota, A., Soares, A., Luzio, R., Lourenço, N., Matos, L., Almeida, E., Gaspar, J.L., Miranda, J.M., 2006. An audio-magnetotelluric investigation in Terceira Island (Azores). Journal of Applied Geophysics, 59(4), 314-323.

Müller, A., Haak, V., 2004. 3-D modeling of the deep electrical conductivity of Merapi volcano (Central Java): integrating magnetotellurics, induction vectors and the effects of steep topography. Journal of Volcanology and Geothermal Research, 138, 205-222.

Navarro, J.M., Coello, J., 1989. Depressions originated by landslide processes in Tenerife. In: Araña, V. (ed.). Lanzarote, European Science Foundation Meeting on Canarian Volcanism, 150-152.

Navarro Latorre, J.M., 1996. Hydrogeological analysis of the Las Cañadas area (in Spanish). In: Excelentísimo Cabildo Insular. Estudios hidrogeológicos de Tenerife. Tenerife, Excelentísimo Cabildo Insular, 1-64.

Nurhasan, Ogawa, Y., Ujihara, N., Tank, B., Honkura, Y., Onizawa, S., Mori, T., Makino, M., 2006. Two electrical conductors beneath Kusatsu-Shirane volcano, Japan, imaged by audiomagnetotellurics, and their implications for the hydrothermal system. Earth Planets Space, 58, 1053-1059.

Ogawa, Y., Takakura, S., 1990. CSAMT Measurements across the 1986 C Craters of Izu-Oshima Island, Japan. Journal of Geomagnetism and Geoelectricity, 42, 211-224.

Ogawa, Y., Matsushima, N., Oshima, H., Takakura, S., Utsugi, M., Hirano, K., Igarashi, M., Doi, T., 1998. A resistivity cross-section of Usu volcano, Hokkaido, Japan, by audiomagnetotelluric soundings. Earth Planets Space, 50, 339-346.

Ortiz, R., Araña, V., Astiz, M., García, A., 1986. Magnetotelluric study of the Teide (Tenerife) and Timanfaya (Lanzarote) volcanic areas. Journal of Volcanology and Geothermal Research, 30(3-4), 357-377.

MOP-UNESCO, 1975. Estudio científico de los recursos de agua en las Islas Canarias (SPA/69/515). Madrid, Ministerio de Obras Públicas, Dirección General de Obras Hidráulicas, Programa de las Naciones Unidas para el Desarrollo (UNESCO). Volúmenes III (238pp) and V (illustrations).

Pous, J., Heise, W., Schnegg, P.-A., Muñoz, G., Marti, J., Soriano, C., 2002. Magnetotelluric study of the Las Cañadas caldera (Tenerife, Canary Islands): structural and hydrogeological implications. Earth and Planetary Science Letters, 204, 249-263.

Schnegg, P.-A., 1993. An automatic scheme for 2-D magnetotelluric modelling, based on low-order polynomial fitting. Journal of Geomagnetism and Geoelectricity, 45, 1039-1043.

Schnegg, P.-A., 1997. Electrical structure of Plaine des Sables caldera, Piton de la Fournaise volcano (Reunion Island). Annali di Geofisica, XL(2), 305-317.

Servicio de Planificación Hidráulica, 1993. Plan hidrológico insular de Tenerife. Tenerife, Gobierno de Canarias, 138pp.

Simpson, F., Bahr, K., 2005. Practical Magnetotellurics. Cambridge, Cambridge University Press, 254 pp.

Spray, J.G., 1997. Superfaults. Geology, 25(7), 579-582.

Teide Group, 1997. Morphometric interpretation of the northwest and southeast slopes of Tenerife, Canary Islands. Journal of Geophysical Research, 102(B9), 20325-20342.

Valentin, A., Albert-Beltran, J.F., Diez, J.L., 1990. Geochemical and geothermal constraints in magma bodies associated with historic activity, Tenerife (Canary Islands). Journal of Volcanology and Geothermal Research, 44, 251-264.

Varga, R.J., Smith, B.M., 1984. Evolution of the early Oligocene Bonanza caldera, northeast San Juan volcanic field, Colorado. Journal of Geophysical Research, 89, 8679-8694.

Vozoff, K., 1991. The magnetotelluric method. In: Nabighian, M.N. (ed.). Electromagnetic Methods in Geophysics. Oklahoma (USA), Society of Exploration Geophysicists Tulsa, 641-711.

Watts, A.B., Masson, D.G., 1995. A giant landslide on the north flank of Tenerife, Canary Islands. Journal of Geophysical Research, 100(B12), 24487-24498.

Downloads

Published

2010-05-20