Role of crustal melting in petrogenesis of the Cretaceous Water Island Formation (Virgin Islands, northeast Antilles Island arc)
DOI:
https://doi.org/10.1344/105.000000356Keywords:
Antilles, Virgin Islands, Water Island Fm, Plagiorhyolite, Crustal meltingAbstract
The latest Aptian to earliest Albian (~115 Ma) Water Island Fm in the Virgin Islands contains some of the oldest known arc-related strata in the Greater Antilles Island Arc. Hence, the unit is of considerable significance in tectonic reconstructions of initial subduction parameters along the long-lived destructive plate margin separating the North American and Caribbean Plates. Exposed Water Island strata are bimodal, consisting predominantly of altered dacite and rhyolite (originally called keratophyre; 65-85% SiO2 and subordinate degraded (spilite; 46-57% SiO2). TiO2 content of Water Island basalt averages approximately 0.5%, resembling borderline intermediate-Ti boninite basalts, consistent with low incompatible element abundances and low normalized light rare earth elements (LREE) with respect to Sm. Trace element patterns of the felsic suite, characterized by pronounced negative normalized anomalies for high field-strength elements (HFSE), low Sr/Y, and low absolute rare earth element (REE) abundances, and relatively flat normalized REE patterns, have analogues in plagiorhyolite suites from bimodal Cenozoic arcs, including the western Aleutians, Izu-Bonin, the Kermadecs, and South Sandwich. Relatively low incompatible element concentrations in plagiorhyolites and contrasting normalized incompatible trace element patterns in basalts preclude an origin of Water Island plagiorhyolite through MORB-type fractional crystallization. Compositions are consistent instead with melting models involving partial fusion of amphibole-bearing gabbro at low pressures (within the stability range of plagioclase) in response to introduction of heat and aqueous flux by arc-related basalt melts and associated hydrothermal fluids during transmission to the surface. Truncation of the basalt fractional crystallization trend at SiO2 = 57% indicates evolved island arc basalt (IAB) crystal fractionates were gradually displaced from crustal magma conduits by more buoyant plagiorhyolite melt, and trapped in underplated, sub-crustal magma chambers. Basalts have low (Ce/Ce*)N (average ~ 0.78), indicating the presence of significant pelagic sediment (0.5 to 1.5% Atlantic Cretaceous pelagic sediment, AKPS). One subunit of relatively high-HFSE plagiorhyolite has (Ce/Ce*)N near-expected values, but another with low-HFSE has slightly lower than expected (Ce/Ce*)N, consistent with a small sediment component. Absence of intermediate andesite from the Water Island Fm is inconsistent, however, with basaltrhyolite magma mixing processes. Consequently, incorporation of sediment by low-HFSE plagiorhyolite is inferred to have resulted from re-melting of arc-related gabbro.
References
Alabaster, T., Pearce, J.A., Malpas, J., 1982. The volcanic stratigraphy and petrogenesis of the Oman ophiolite. Contributions to Mineralogy and Petrology, 81, 168-183.
Barbieri, M., Caggianelli, A., Di Florio, M.R., Lorenzoni, S., 1994. Plagiogranites and gabbroic rocks from the Mingora ophiolite mélange, Swat Valley, NW Frontier Province, Pakistan. Mineralogical Magazine, 58, 553-566.
Baker, D.R., Eggler, D. H., 1987. Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite, and olivine or low-Ca pyroxene from 1 atm to 8 kbar: application to the Aleutian volcanic center of Atka. American Mineralogist, 72, 12-28.
Barker, F., 1979, Trondhjemites, Dacites, and Related Rocks. Amsterdam, Elsevier, 659pp.
Beard, J.S., 1995. Experimental, geological, and geochemical constraints on the origins of low-K silicic magmas in oceanic arcs. Journal of Geophysical Research, 100, 15593-15600.
Beard, J.S., Lofgren, G.E., 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1,3, and 6.9 kb. Journal of Petrology, 32, 365-401.
Bédard, J.H., 1999. Petrogenesis of boninites from the Betts Cove Ophiolite, Newfoundlandl, Canada: Identification of subducted source components. Journal of Petrology, 40, 1853-1889.
Ben-Othman, D., White, W., Patchett, J., 1989. Geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth and Planetary Science Letters, 94, 1-21.
Burke, K., 1988. Tectonic evolution of the Caribbean. Annual Reviews of Earth and Planetary Sciences, 16, 201-30.
Carmichael, I.S.E., 1964. The petrology of Thingmuli in eastern Iceland. Journal of Petrology, 5, 434-460.
Casey, J.F., 1997. Comparison of major- and trace element geochemistry of abyssal peridotites and mafic plutonic rocks with basalts from the MARK region of the Mid-Atlantic Ridge. Procedings of ODP Science Results, 153, College Station TX, 181-241.
Coleman, R.G., Donato, M.M., 1979. Oceanic plagiogranite revisited. In: Barker, F. (ed.). Trondhjemites, dacites, and related rocks. Amsterdam-Oxford-New York, Elsevier, 149-167.
Coleman, R.G., Peterman, Z., 1975. Oceanic plagiogranite. Journal of Geophysical Research, 80, 1099-1108.
Cox, D.P., Marvin, R.F., McGonigle, J.W., McIntyre, D.H., Rogers, C.I., 1977. Potassium-argon geochemistry of some metamorphic, igneous, and hydrothermal events in Puerto Rico and the Virgin Islands. United States Geological Survey Journal of Research, 5, 689-703.
Crawford, A.J., 1989. Boninites and Related Rocks. London, Unwin Hyman ed., 279 pp.
Defant, M.J., Drummond, M., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662-665.
Defant, M.J., Richerson, P.M., De Boer, J.Z., Stewart, R.H., Maury, R.C., Bellon, H., Drummond, M.S., Feigenson, M.D., Jackson, T.E., 1991. Dacite genesis via both slab melting and differentiation: Petrogenesis of La Yeguada Volcanic Complex, Panama. Journal of Petrology, 32, 1101-1142.
Dick, H.J.B., Natland, J.H., Alt, J.C. et al., 2000. A long in situ section of the lower oceanic crust: results of ODP leg 176 drilling at the southwest Indian Ridge. Earth and Planetary Science Letters, 179, 31-51.
Dixon, S.J., Rutherford, M.J., 1979. Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites:
An experimental study. Earth and Planetary Science Letters, 45, 45-60.
Donnelly, T.W., 1966. Geology of St. Thomas and St. John, U.S.Virgin Islands. In Hess, H. (ed.). Caribbean Geological Investigations. Geological Society of America Memoir, 98, 5-176.
Donnelly, T.W., 1989. Geologic history of the Caribbean and Central America. In Bally, A.W., Palmer, A.R. (eds.). Geology of North America-An Overview. Geological Society of America Special Paper, A, 299-321
Donnelly, T.W., Rogers, J.J.W., Pushkar, P., Armstrong, R.L., 1971. Chemical evolution of the igneous rocks of the eastern West Indies. In Donnelly, T.W. (ed). Caribbean Geophysical, Tectonic, and Petrologic Investigations. Geological Society of America Memoir, 130, 181-224.
Donnelly, T.W., Rogers, J.J.W., 1980. Igneous series in island arcs. Bulletin of Volcanlogy, 43, 347-382.
Donnelly, T.W., Beets, D., Carr, M.J., et al.,1990. History and tectonic setting of Caribbean magmatism. In Case, J.E. and Dengo, G. (eds.). Caribbean Region. Boulder, Colorado, Geological Society of America, H, 339-374.
Dosso, L., Bougault, H., Joron, J.-L., 1993. Geochemical morphology of the North Mid-Atlantic Ridge, 10-24o: Trace element-isotope complementarity. Earth and Planetary Science Letters, 120, 443-462.
Draper, G., Gutiérrez, G., Lewis, J.F., 1996. Thrust emplacement of the Hispañiola peridotite belt: orogenic expression of the mid-Cretaceous Caribbean arc polarity reversal. Geology, 24, 1143-1146.
Drummond, M.S., Defant, M.J., Kepezhinski, P.K., 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society of Edinborough: Earth Sciences, 87, 205-215.
Elthon, D., 1991. Geochemical evidence for formation of the Bay of Islands ophiolite above a subduction zone. Nature, 354, 140-145.
Ewart, A., Griffin, W.L., 1994. Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chemical Geology, 117, 251-284.
Flagler, P. A., Spray, J. G., 1991. Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology 19, 70-73.
Floyd, P.A., Yalinz, M.K., Goncuoglu, M.C., 1998. Geochemistry and petrogenesis of intrusive and extrusive ophiolite plagiogranites. Central Anatolian Crystalline Complex, Turkey. Lithos, 42, 225-241.
Frost, C.D., Schellekens, J.H., 1998. Rb-Sr and Sm-Nd isotopic characterization of Eocene volcanic rocks from Puerto Rico. Geophysical Research Letters, 18, 545-548.
Gerlach, D.C., Leeman, W.H., AveLallement, H.G., 1981. Petrology and geochemistry of plagiogranite in the Canyon Mountain Ophiolite, Oregon. Contributions to Mineralogy and Petrology, 77, 82-92.
Gill, J.B., 1981. Orogenic Andesites and Plate Tectonics. London, Springer, 390 pp.
Green, D.H., Pearson, N.J., 1987. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochemica et Cosmochimia Acta 51, 55-62.
Harland, W.B., Cox, A.V., Llewellyn, P.G., Pickton, C.A.G., Smith, A.G., Walters, R., 1982. A Geologic Time Scale. Cambridge, UK, Cambridge University Press.
Hauff, F., Hoernle, K., Tilton, G., Graham, D.W., Kerr, A.C., 2000. Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large Igneous Province. Earth and Planetary Science Letters, 174, 247-263.
Hébert, R., Constantin, M., Robinson, P.T., 1991. Primary mineralogy of Leg 118 gabbroic rocks and their place in the spectrum of oceanic mafic igneous rocks. Procedings of ODP, Science results, 118, Ocean Drilling Program, College Station, TX, 3-20.
Hekinian, R., 1971. Petrological and geochemical studies of spilites and associated rocks from St. John, U.S. Virgin Islands. Geological Society of America Bulletin, 82, 659-682.
Helsley, C.E., 1960. Geology of the British Virgin Islands. Doctoral Dissertation, NJ, Princeton University, 167 pp.
Hickey, R.L., Frey, F.A., 1982. Geochemical characteristics of bononite-series volcanics: implications for their source. Goechimica et Cosmochimica Acta, 46, 2009-2115.
Hirose, K., 1997. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 25, 42-44.
Hochstaedter, A.G., Gill, J.B., Morris, J.D., 1990. Volcanism in the Shmisu Rift, II. Subduction and non-subduction related components. Earth and Planetary Science Letters 100, 195-209.
Hopson, C.A., Coleman, R.G., Gregory, R.T., Pallister, J.S., Bailey, E.H., 1981. Geologic section through the Samail ophiolite and associated rocks along a Muscat-Ibra transect, southeastern Oman Mountains. Journal of Geophysical Research, 86, 2527-2544.
Horan, S., 1995. Geochemistry and tectonic significance of the Maimon-Amina Schists, Cordillera Central, Dominican Republic. M.Sc. Thesis, Gainsville, FL, University of Florida, 172 pp.
Housh, T.B., Luhr, J.F., 1991. Plagioclase-melt equilibria in hydrous systems. American Mineralogist, 76, 477-492.
Jafri, S. H., Charan, S.N, Govil, P. K., 1995. Plagiogranite from the Andaman ophiolite belt, Bay of Bengal, India. Journal of
the Geological Society of London, 152, 681-687.
Jakeˇs, P., Gill, J.B., 1970. Rare earth elements and the island arc tholeiite series. Earth and Planetary Science Letters, 9, 17-28.
Jansma, P., Mattioli, G., Lopez, A., DeMets, C., Dixon, T.H., Mann, P., Calais, E., 2000. Neotectonics of Puerto Rico and the Virgin Islands, northeastern Caribbean, from GPS geodesy. Tectonics, 19, 1021-1037.
Jarrard, R.D., 1986. Relations among subduction parameters. Reviews of Geophysics, 24, 217-284,.
Jenner, G.A., Dunning, G.R., Malpas, J., Brown, M., Brace, T., 1991. Bay of Island and Little Port complexes revisited: Age, geochemical and isotope evidence confirm supra-subduction zone origin. Canadian Journal of Earth Sciences, 28, 1635-1652.
Juster, T.C., Grove, T.L., Perfit, M.R., 1989. Experimentsl constraints on the generation of Fe-Ti basalts, andesites, and rhyodacites at the Galapagos spreading center. Journal of Geophysical Research, 94, 9251-9274.
Jolly, W.T., Lidiak, E.G., Schelleckens, H.S., Santos, S., 1998a. Volcanism, tectonics, and stratigraphic correlations in Puerto Rico. In Lidiak, E.G., Larue, D.K. (eds.). Tectonics and Geochemistry of Northeast Caribbean. Geological Society of America Special Paper, 322, 1-34.
Jolly, W.T., Lidiak, E.G., Dickin, A.P., Wu, T-S., 1998b. Geochemical diversity of Mesozoic island arc tectonic blocks, eastern Puerto Rico. In Lidiak, E.G., Larue, D.K. (eds.). Tectonics and Geochemistry of the Northeastern Caribbean. Geological Society of America Special Paper, 322, 67-89.
Jolly, W.T., Lidiak, E.G., Dickin, A.P., 2001. Secular geochemistry of central Puerto Rican island arc lavas: constraints on Mesozoic tectonism in the Greater Antilles. Journal of Petrology, 42, 2197-2214.
Jolly, W.T., Lidiak, E.G., Dickin, A.P., 2002. Recycling in the Puerto Rican mantle wedge, Greater Antilles Island Arc. The Island Arc 11, 10-24.
Jolly, W.T., Lidiak, E.G., Dickin, A.P., 2006. Cretaceous to MidEocene pelagic sediment budget in Puerto Rico and the Virgin Islands (northeastern Antilles Island Arc). Geologica Acta, 4, 35-62.
Kay, R.W., 1980. Volcanic arc magmas: implications of a melting-mixing model for element recycling in the crust-upper mantle system. Journal of Geology, 88, 497-522.
Kepezhinskas, P.K., Defant, M.J., Drummond, M.J., 1995. Na Metasomatism in the island-arc mantle by slab melt-peridotite interaction: evidence from mantle xenoliths in the North Kamchatka Arc. Journal of Petrology, 36, 1505-1527.
Kerr, A.C., Iturralde-Vinent, M.A., Saunders, A.D., Babbs, T.L., Tarney, J., 1999. A new plate tectonic model of the Caribbean: Implications from a geochemical reconnaisance of Cuban Mesozoic volcanic rocks. Geological Society of America Bulletin, 55, 1581-1599.
Kerr, A.C., Tarney, J., Kempton, P.D., Spaden, S., Nivia, A., Marriner, G.F., Duncan, R.A., 2002, Pervasive mantle plume head heterogeniety: Evidence from the late Cretaceous Caribbean-Columbina oceanic plateau. Journal of Geophysical Research, 107, 1029-2001.
Koepke, J., Feig, S., Snow, J., Freise, M., 2004. Petrogenesis of oceanic plagiogranites by partial melting of gabbro: an experimental study. Contributions to Mineralogy and Petrology, 146, 414-432.
La Maitre, R.W., 1989. A classification of Igneous Rocks and Glossary of Terms. Oxford, Blackwell, 193 pp.
Lapierre, H., Dupuis, V., Lepinay, B.M., Tardy, M., Ruiz, J., Maury, R.C., Hernandez, J., Loubert, M., 1997. Is the Lower Duarte Complex (Hispañiola) a remnant of the Caribbean plume generated oceanic plateau? Journal of Geology, 105, 111-120.
Lapierre, H., Dupuis, V., Lepinay, B.M., Bosch, D., Moni, P., Tardy, M., Maury, R. C., 1999. Late Jurassic oceanic crust and Upper Cretaceous Caribbean Plateau picritic basalts exposed in the Duarte igneous complex, Hispañiola. Journal of Geology, 107, 193-207.
Leat, P.T., Larter, R.D., 2003. Intra-oceanic subduction systems: introduction. Intra-ocanic subduction systems: Tectonic and
magmatic processes. The Geological Society of London, 219, 1-18.
Leat, P.T., Smellie, J.L., 2003. Magmatism in the south Sandwish arc. The Geological Society of London, 219, 285-313.
Lebron, M.C., Perfit, M.R., 1994. Petrochemistry and tectonic significance of Cretaceous island arc rocks, Cordillera Oriental, Dominican Republic. Tectonophysics, 229, 60-100.
Lewis, J.F., Astacio, V.A., Espaillat, J., Jimenez, J., 2000. The occurrence of volcanogenic sulfide in the Maimon Formation, Dominican Republic: the Cerro Maimon, Loma Pesada and Loma Banbuito deposits. In: Sharlock, R., Barsch, R., Logan, A. (eds.). VMS Deposits of Latin America. Geological Society of Canada Special Publication, 228-249.
Lewis, J.F., Escuder Viruete, J., Hernaiz Huerta, P.P., Gutierrez, G., Draper, G., Pérez-Estaun, A., 2002. Subdivisión geoquímica del Arco Isla Circum-Caribe, Cordillera Central Dominicana: Implicaciones para la formación, acreción, y crecimiento cortical en un ambiente intraoceánico. Acta Geologica Hispanica, 37, 81-122.
Lewis, J.F., Hames, W.E., Draper, G., 1999. Late Jurassic oceanic crust and Upper Cretaceous Caribbean Plateu picritic basalts exposed in the Duarte Igneous Complex, Hispaniola: A discussion. Journal of Geology, 107, 235-235.
Lewis, J.F., Jiménez, J.G., 1991. Duarte Complex in the La Vega-Jarabacoa-Janico Area, Central Espaniola: Geological and geochemical features of the sea floor during early stages of arc evolution. Geological Society of America Special Paper, 262, 115-142.
Lidiak, E.G., Jolly, W.T., 1996. Circum-Caribbean granitoids: Characteristics and Origin. International Geology Review, 38, 1098-1133.
Malpas, J., 1979. Two contrasting trondhjemite associations from transported ophiolites in Western Newfoundland. In:
Barker, F. (ed.). Trondhjemites, Dacites, and Related Rocks. Amsterdam, Elsevier, 465-487.
Martin, H., 1986. Effect of steeper geothermal gradient on geochemistry of subduction zone magmas. Geology, 14, 753- 756.
Montgomery, H., Pessagno, E.A., Jr, Lewis, J.F., Schellekens, J.H., 1994. Paleogeography of Jurassic fragments in the Caribbean. Tectonics, 13, 725-732.
Morris, P.A., 1995. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology, 23, 395-398.
Nash, W.P., Crecraft, H.R., 1985. Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49, 309-322.
Nicholls, G.T., Wylie, P.J., Stern, C.R., 1994. Subduction zone melting of pelagic sediments constrained by melting experiments. Nature, 371, 785-788.
Peacock, S., 1993. Large-scale hydration of the lithosphere above subducting slabs. Chemical Geology, 108, 49-59.
Pallister, J.S., Knight, R.J., 1981. Rare-earth element geochemistry of the Samail ophiolite near Ibra, Oman. Journal of Geophysical Research, 86, 2673-2697.
Pearce, J.A., 1983. Role of subcontinental lithosphere in magma genesis at active continental margins. In: Hawkesworth,
C.J., Norry, M.J. (eds.). Continental Basalts and Mantle Xenoliths. Natwich, Shiva, 373-403.
Pearce, J.A., Harris, N.B.W, Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-982.
Pearce, J.A., Parkinson, I.J., 1993. Trace element models for mantle melting: application to volcanic arc petrogenesis. Geological Society of London Special Paper, 76, 373-403.
Pearce, J.A., Baker, P.E., Harvey, P.K, Luff, I. W., 1995. Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath the South Sandwich Island Arc. Journal of Petrology, 36, 1073-1109.
Pearce, J.A., Kempton, P.D., Nowell, G.M., Nobel, S.R., 1999. Hf-Nd element and isotope perspective on the nature and
provenance of mantle and subduction components in Western Pacific arc-basin systems. Journal of Petrology, 40, 1579-1611.
Pessagno, E.A., 1976. Middle Cretaceous planktonic foraminifera of the Antilles-Caribbean region and eastern Mexico. Musée d’Historie Naturelle de Nice, Annales, 4, 176-182.
Pindell, J.L., Barrett, S.F., 1990. Geological evolution of the Caribbean region: a plate tectonic perspective. In: Dengo, G., Case, J.E. (eds.). The Caribbean Region. Geological Society of America Special Paper, H, 405-432.
Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and
mantle. Chemical Geology, 145, 325-394.
Price, R.C., Gamble, J.A., Smith, I.E.M., Stewart, R.B., Eggins, S., Wright, I.C., 2005. An integrated model for temporal evolution of andesites and rhyolites and crustasl development in New Zealand’s North Island. Journal of Volcanology and Geothermal Research, 10, 1-24.
Proenza, J.A., Díaz-Martínez, R., Iriondo, A., Marchesi, C., Melgarejo, J.C., Gervilla, F., Garrido, C.J., Rodriguez-Vega, A., Lozano-Santacrus, R., Blanco-Moreno, J.A., 2006. Primitive Cretaceous island-arc volcanic rocks in eastern Cuba: the Téneme Formation. Geologica Acta, 4, 103-121.
Prouteau, G., Scallet, B., Pichavant, M., Maury, R.C., 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410, 197-200.
Rankin, D., 2002. Geology of St. John, U.S. Virgin Islands. United States Geologicl Survey Professional Paper, 1631, 1-36. Rapp, R. P., Watson, E.B., 1995. The amphibole-out phase boundary in partially melted metabaslat at 8-32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 36, 891-931.
Rapp, R.P., Shimizu, N., Norman, M.D., Applegate, G.S., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 160, 335-356.
Rollinson, H., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. London, Longman, 352 pp.
Ryerson, F.J., Watson, E.B., 1987. Rutile saturtion in magmas: implications for Ti-Nb-Ta depletion in island-arc basalts. Earth and Planetary Science Letters, 86, 225-239.
Sajona, F.G., Bellon, H., Maury, R.C., Pubellier, M., Cotten, J., Rangin, C., 1994. Magmatic response to abrupt changes in geodynamic settings: Pliocene-Quaternary calc-alkaline and Nb-enriched lavas, Mindanao (Philippines). Tectonophysics,
, 47-72.
Schellekens, J.H., Montgomery, H., Joyce, J., Smith, A.L., 1990. Late Jurassic to Late Cretaceous development of island arc crust in southwestern Puerto Rico. Transactions of 12th Caribbean Geological Conference, St. Croix, U.S. Virgin Islands, The University of Miami, FL, 268-281,
Schellekens, J.H., 1998. Geochemical evolution and tectonic history of Puerto Rico. In: Lidiak, E.G., Larue, D. K. (eds.). Tectonics and Geochemistry of the Northeastern Caribbean. Geological Society of America Special Paper, 322, 35-66.
Schiano, P., Clocchiatti, R., 1994. Worldwide occurrence of silica-rich melts in suib-continental and sub-oceanic mantle minerals. Nature, 368, 621-624.
Schiano. P., Cloccjiatti, R., Shimizu, N., Maury, R.C., Jochum, K.P., Hoffman, A.W., 1995. Hydrous silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature, 377, 594-600.
Sen, C., Dunn, T., 1994. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing
peridotite. Contributions to Mineralogy and Petrology, 119, 422-432.
Shaw, D.M., 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta, 34, 237-43.
Sisson, T.W., 1991. Pyroxene-high silica rhyolite trace element partition coefficients measured by ion microprobe. Geochimica et Cosmochimica Acta, 55, 1575-1585.
Smith, I.E.M., Stewart, R.B., Price, R.C., 2003. The petrology of a large intra-oceanic silicic eruption: the Sandy Bay Tephra, Kermadec Arc, Southwest Pacific. Journal of Volcanology and Geothermal Research, 124, 173-194.
Smithies, R.H., 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters, 182, 115-125.
Spiegelman, M., McKenzie, D., 1987. Simple 2-d models for melt extraction at mid-ocean ridges and island arcs. Earth and Planetary Science Letters 156, 139-167.
Stern, C.R., Kilian, R., 1996. Role of subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123, 263-381.
Stimac, J., Hickmott, D., 1994. Trace-element partition-coefficients for ilmenite, orthopyroxene and pyrrhotite in rhyolite, detrermined by micro-pixe analysis. Chemical Geology, 117, 313-330.
Sun, S.-S., McDonough, W.F., 1989. Chemical and Isotopic systematics of oceanic basalts. In: Saunders, A., Norry, M. (eds.). Magmatism in Ocean Basins, Geological Society Special Publication, 42, 313-45.
Tamura, Y., Tatsumi, Y., 2002. Remelting of andesitic crust as possible origin of rhyolite in oceanic arcs: an example from Izu-Bonin Arc. Journal of Petrology, 43, 1029-1047.
Tatsumi, Y., Shukuno, H., Sato, K., Shibata, T., Yoshikawa, M., 2003. The petrology and geochemistry of high-magnesium andesites at the western tip of the Setouchi Volcanic Belt, SW Japan. Journal of Petrology, 44, 1562-1578.
Thy, P., Lofgren, G.E., 1994. Experimental constraints on the low-pressure evolution of transitional and mildly alkalic basalts: the effect of Fe-Ti oxide minerals, and the origin of basaltic andesites. Contributions to Mineralogy and Petrology, 116, 340-351.
Toplis, M.J., Carroll, M.R., 1995. An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basalt systems. Journal of Petrology, 36, 1137-1170.
Tsvetlov, A.A., 1991. Magmatism of the westernmost (Komandorsky) seqment of the Aleutian island arc. Tectonophysics, 199, 289-317.
Wyllie, P.J., Wolf, M.B., 1993. Amphibolite dehydration-melting: Sorting out the problem. In: Alabaster, H.M., Harris, N.B.W., Neary, C.R. (eds.). Magmatic Processes and Plate Tectonics. Geological Society Special Publication, 76, 405-416.
Woodhead, J., Eggins, S., Johnson, R., 1998. Magma genesis in New Britain: Further insights into melting and mass transfer
processes. Journal of Petrology, 39, 1641-1668.
Yazeva, R.G., 1978. Sodic acidic volcanites of the Urals and plagiorhyolites of recent island arcs. International Geology Review, 20, 1009-1020.
Yogodzinski, G.M., Volynets, A.V., Koloskov, A.V., Seliverston, N.I., Matvenkov, V.V., 1994. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, Far Western Aleutians. Journal of Petrology, 35, 163-204.
Yogodzinski, C.A., Kay, R.W., Volynets, O., Koloskov, A., Kay, S.M., 1995. Magnesian andesite in the western Aleutians: Implications for slab melting processes in the mantle wedge. Geological Society of America Bulletin, 107, 505-519.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
Geologica Acta is the property of the UB, GEO3BCN, IDAEA and UAB. Geologica Acta must be cited for any partial or full reproduction. Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows anyone to reproduce and disseminate the content of the journal and even make derivative works crediting authorship and provenance and distributing possible derivative works under the same or an equivalent license.
Author Rights
Authors retain the copyright on their papers and are authorized to post them on their own web pages or institutional repositories. The copyright was retained by the journal from the year 2003 until 2009. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission from Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.