Petrogenesis of fertile mantle peridotites from the Monte del Estado massif (Southwest Puerto Rico): a preserved section of Proto-Caribbean lithospheric mantle?


  • C. MARCHESI Géosciences Montpellier UMR 5243, CNRS-Université Montpellier II, Place E. Bataillon, 34095 Montpellier, France. Instituto andaluz de Ciencias de la Tierra, CSiC-Universidad de Granada. Avenida de las Palmeras 4, 18100 Armilla (Granada), Spain. Marchesi E-mail:
  • W.T. JOLLY Department of Earth Sciences, Brock University, St Catharines. Ontario L2S 3A1, Canada
  • J.F. LEWIS Department of Earth and Environmental Sciences, The George Washington University. Washington DC 20052, U.S.A.
  • C.J. GARRIDO Instituto andaluz de Ciencias de la Tierra, CSiC-Universidad de Granada. Avenida de las Palmeras 4, 18100 Armilla (Granada), Spain. Marchesi E-mail:
  • J.A. PROENZA FERNANDEZ epartament de Cristal·lografia, Mineralogia i dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB). Martí i Franquès s/n, 08028 Barcelona, Spain.
  • E.G. LIDIAK Department of Geology and Planetary Science, University of Pittsburgh. Pittsburgh PA 15269, U.S.A.



Abyssal peridotite, Fractional melting, Ophiolite, Proto-Caribbean plate, Puerto Rico


The Monte del Estado massif is the largest and northernmost serpentinized peridotite belt in southwest Puerto Rico. It is mainly composed of spinel lherzolite and minor harzburgite with variable clinopyroxene modal abundances. Mineral and whole rock major and trace element compositions of peridotites coincide with those of fertile abyssal mantle rocks from mid ocean ridges. Peridotites lost 2-14 wt% of relative MgO and variable amounts of CaO by serpentinization and seafloor weathering. HREE contents in whole rock indicate that the Monte del Estado peridotites are residues after low to moderate degrees (2-15%) of fractional partial melting in the spinel stability field. However, very low LREE/HREE and MREE/HREE in clinopyroxene cannot be explained by melting models of a spinel lherzolite source and support that the Monte del Estado peridotites experienced initial low fractional melting degrees (~ 4%) in the garnet stability field. The relative enrichment of LREE in whole rock is not due to alteration processes but probably reflects the capture of percolating fluid/melt fractions or the crystallization of sub-percent amounts of hydrous minerals (e.g., amphibole, phlogopite) along grain boundaries or as microinclusions in minerals. We propose that the Monte del Estado peridotite belt represents a section of ancient Proto-Caribbean (Atlantic) lithospheric mantle originated by seafloor spreading between North and South America in the Late Jurassic- Early Cretaceous. This portion of oceanic lithospheric mantle was subsequently trapped in the forearc region of the Greater Antilles paleo-island arc generated by the northward subduction of the Caribbean plate beneath the Proto-Caribbean ocean. Finally, the Monte del Estado peridotites belt was emplaced in the Early Cretaceous probably as result of the change in subduction polarity of the Greater Antilles paleo-island arc without having been significantly modified by subduction processes


Arai, S., 1994. Characterization of spinel peridotites by olivinespinel compositional relationships: Review and interpretation. Chemical Geology, 113, 191-204.

Austrheim, H., Prestvik, T., 2008. Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, north–central Norway. Lithos, 104, 177-198.

Bach, W., Garrido, C.J., Paulick, H., Harvey, J., Rosner, M., 2004. Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15º N. Geochemistry Geophysics Geosystems, 5, Q09F26. doi:10.1029/2004GC000744.

Batanova, V.G., Sobolev, A.V., 2000. Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus. Geology, 28, 55-58.

Bedini, R.M., Bodinier, J.-L., 1999. Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: ICP-MS data from the East African Rift. Geochimica et Cosmochimica Acta, 63(22), 3883-3900.

Bodinier, J.-L., Godard, M., 2003. Orogenic, Ophiolitic, and Abyssal Peridotites. In: Carlson, R.W. (ed.). The Mantle and Core. Treatise on Geochemistry. Elsevier, 2, 103-170.

Bodinier, J.-L., Vasseur, G., Vernieres, J., Dupuy, C., Fabriès, J., 1990. Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite. Journal of Petrology, 31, 597-628.

Curet, A.F., 1986. Geologic map of the Mayagüez and Rosario quadrangles, Puerto Rico. Miscellaneous Investigations Series Map, U.S. Geological Survey, I-1657.

Dick, H.J.B., Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1), 54-76.

Donnelly, K.E., Goldstein, S.L., Langmuir, C.H., Spiegelman, M., 2004. Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth and Planetary Science Letters, 226, 347-366.

Gao, S., Liu, X., Yuan, H., Hattendorf, B., Günther, D., Chen, L., Hu, S., 2002. Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablationinductively coupled plasma-mass spectrometry. Geostandards Newsletter, 26(2), 181-196.

Garrido, C.J., 1995. Estudio Geoquímico de las Capas Máficas del Mazico Ultramáfico de Ronda (Cordillera Bética, Sur de España). Ph.D. Thesis. Granada, Universidad de Granada, 273pp.

Garrido, C.J., Bodinier, J.-L., Alard, O., 2000. Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite.

Earth and Planetary Science Letters, 181(3), 341-358.

Godard, M., Jousselin, D., Bodinier, J.-L., 2000. Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth and Planetary Science Letters, 180(1-2), 133-148.

Govindaraju, K., 1994. Compilation of working values and sample description for 383 geostandards. Geostandards Newsletter, XVIII (Special Issue), 1-158.

Gruau, G., Griffiths, J.B., Lécuyer, C., 1998. The origin of U-shaped rare earth patterns in ophiolite peridotites: Assessing the role of secondary alteration and melt/rock reaction. Geochimica et Cosmochimica Acta, 62, 3545-3560.

Hart, S.R., Zindler, A., 1986. In search of a bulk-Earth composition. Chemical Geology, 57, 247-267.

Hellebrand, E., Snow, J.E., Hoppe, P., Hofmann, A.W., 2002. Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. Journal of Petrology, 43(12), 2305-2338.

Hiraga, T., Hirschmann, M.M., Kohlstedt, D.L., 2007. Equilibrium interface segregation in the diopside–forsterite system II: applications of interface enrichment to mantle geochemistry. Geochimica et Cosmochimica Acta, 71, 1281-1289.

Ionov, D.A., Savoyant, L., Dupuy, C., 1992. Application of the ICP-MS technique to trace-element analysis of peridotites and their minerals. Geostandards Newsletter, 16(2), 311-315.

Jagoutz, E., Palme, H., Baddenhausen, H., Blum, H., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V., Wanke, H., 1979. The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. Geochimica et Cosmochimica Acta, 11, 2031-2050.

Jean, M.M., Shervais, J.W., Choi, S.H., Mukasa, S.B., 2010. Melt extraction and melt refertilization in mantle peridotite of the Coast Range ophiolite: an LA–ICP–MS study. Contributions to Mineralogy and Petrology, 159, 113-136.

Jochum, K.P., Seufert, H.M., Thirwall, M.F., 1990. Multi-element analysis of 15 international standard rocks by isotope-dilution spark source mass spectrometry (ID-SSMS). Analytical Chemistry, 331, 104-110.

Johnson, K.T.M., 1990. Melting in the Oceanic Upper Mantle: An Ion Microprobe Study of Diopsides in Abyssal Peridotites. Journal of Geophysical Research, 95(B3), 2661-2678.

Johnson, K.T.M., 1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet and basaltic melt at high pressures. Contributions to Mineralogy and Petrology, 133, 60-68.

Jolly, W.T., Lidiak, E.G., Schellekens, J.H., Santos, H., 1998. Volcanism, tectonics, and stratigraphic correlations in Puerto Rico. In: Lidiak, E.G., Larue, D.K. (eds.). Tectonics and geochemistry of the northeastern Caribbean. Geological Society of America, 322 (Special Paper), 1-34.

Jolly, W.T., Schellekens, J.H., Dickin, A.P., 2007. High-Mg andesites and related lavas from southwest Puerto Rico (Greater Antilles Island Arc): Petrogenetic links with emplacement of the Late Cretaceous Caribbean mantle plume. Lithos, 98, 1-26.

Jolly, W.T., Lewis, J.F., Proenza, J.A., 2008a. Mineralogy and mineral chemistry of the Rio Guanajibo peridotites, southwest Puerto Rico, with comparisons. In: Gil Argelés, J. (ed.). 18th Caribbean Geological Conference. Santo Domingo (Dominican Republic), Programa y Resúmenes, 34.

Jolly, W.T., Lidiak, E.G., Dickin, A.P., 2008b. The case for persistent southwest-dipping Cretaceous convergence in the northeast Antilles: Geochemistry, melting models, and tectonic implications. Geological Society of America Bulletin, 120, 1036-1052.

Kogiso, T., Tatsumi, Y., Nakano, S., 1997. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters, 148, 193-205.

Laó-Dávila, D., 2008. Serpentinite emplacement and deformation in western Puerto Rico and their implications for the Caribbean-North America plate boundary tectonic history. Ph.D. Thesis. Pittsburgh, University of Pittsburgh, 293pp.

Lázaro, C., García-Casco, A., Rojas Agramonte, Y., Kröner, A., Neubauer, F., Iturralde-Vinent, M.A., 2009. Fifty-fivemillion-year history of oceanic subduction and exhumation at the northern edge of the Caribbean plate (Sierra del Convento mélange, Cuba). Journal of metamorphic Geology, 27, 19-40.

Lewis, J.F., Draper, G., Proenza, J.A., Espaillat, J., Jiménez, J., 2006a. Ophiolite-Related Ultramafic Rocks (Serpentinites) in the Caribbean Region: A Review of their Occurrence, Composition, Origin, Emplacement and Ni-Laterite Soil Formation. Geologica Acta, 4(1-2), 237-263.

Lewis, J.F., Proenza, J.A., Jolly, W.T., Lidiak, E.G., 2006b. Monte del Estado (Puerto Rico) and Loma Caribe (Dominican Republic) peridotites: A look at two different Mesozoic mantle sections within northern Caribbean region. Geophysical Research Abstracts, 8, A-08798.

Llerandi Román, P.A., 2004. The Geology of the western section of the Sabana Grande quadrangle: implications for the geological evolution of southwestern Puerto Rico. M.S. Thesis. Mayagüez, University of Puerto Rico, 134pp.

Marchesi, C., Garrido, C.J., Godard, M., Proenza, J.A., Gervilla, F., Blanco-Moreno, J., 2006. Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contributions to Mineralogy and Petrology, 151, 717-736.

Marchesi, C., Garrido, C.J., Bosch, D., Proenza, J.A., Gervilla, F., Monié, P., Rodríguez-Vega, A., 2007. Geochemistry of Cretaceous Magmatism in Eastern Cuba: Recycling of North American Continental Sediments and Implications for Subduction Polarity in the Greater Antilles Paleo-arc. Journal of Petrology, 48, 1813-1840.

Mattson, P.H., 1960. Geology of the Mayagüez area, Puerto Rico. Geological Society of America Bulletin, 71, 319-362.

Mattson, P.H., 1979. Subduction, buoyant breaking, flipping and strike-slip faulting in the northern Caribbean. Journal of Geology, 87, 293-304.

McIntyre, D.H., Aaron, J.M., Tobisch, O.T., 1970. Cretaceous and lower Tertiary stratigraphy in northwestern Puerto Rico. U.S. Geological Survey Bulletin, 1294-D, 16.

Meschede, M., Frisch, W., 1998. A plate tectonic model for the Mesozoic and Early Cenozoic history of the Caribbean plate. Tectonophysics, 296, 269-291.

Münker, C., Wörner, G., Yogodzinski, G., Churikova, T., 2004. Behaviour of high field strength elements in subduction zones: constraints from Kamchatka–Aleutian arc lavas. Earth and Planetary Science Letters, 224, 275-293.

Navon, O., Stolper, E., 1987. Geochemical consequence of melt percolation: the upper mantle as a chromatographic column. Journal of Geology, 95, 285-307.

Niu, Y., 1997. Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. Journal of Petrology, 38, 1047-1074.

Niu, Y., Hékinian, R., 1997. Basaltic liquids and harzburgitic residues in the Garrett transform: a case study at fast-spreading ridges. Earth and Planetary Science Letters, 146, 243-258.

Niu, Y., Langmuir, C.H., Kinzler, R.J., 1997. The origin of abyssal peridotites: a new perspective. Earth and Planetary Science Letters, 152, 251-265.

Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12), 2423-2458.

Parkinson, I.J., Pearce, J.A., 1998. Peridotites from the IzuBonin-Mariana Forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39, 1577-1618.

Parkinson, I.J., Pearce, J.A., Thirlwall, M.F., Johnson, K.T.M., Ingram, G., 1992. Trace elements geochemistry of peridotites from the Izu–Bonin–Mariana forearc, Leg 125. In: Fryer, P., Pearce, J.A., Stokking, L.B. (eds.). Proceedings of the Ocean Drilling Program. Scientific Results, 125, 487-506.

Paulick, H., Bach, W., Godard, M., De Hoog, J.C.M., Suhr, G., Harvey, J., 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20’N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234, 179-210.

Pearce, N.J., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., Chenery, S.P., 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter, 21, 115-144.

Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., Leat, P.T., 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139, 36-53.

Pindell, J.L., Barrett, S.F., 1990. Geological evolution of the Caribbean Region; A plate-tectonic perspective. In: Dengo, G., Case, J. (eds.). The Geology of North America, The Caribbean Region. The Geological Society of America, H, 405-432.

Pindell, J.L., Kennan, L., 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In: James, K., Lorente, M.A., Pindell, J.L., (eds.). The Origin and Evolution of the Caribbean Plate. Geological Society of London, 328 (Special Publications), 1-55.

Pindell, J.L., Kennan, L., Stanek, K.P., Maresch, W.V., Draper, G., 2006. Foundations of Gulf of Mexico and Caribbean evolution: eight controversies resolved. Geologica Acta, 4(1-2), 303-341.

Proenza, J.A., Gervilla, F., Melgarejo, J.C., 1999a. La Moho Transition Zone en el Macizo Ofiolítico Moa-Baracoa: un ejemplo de interacción magma/peridotita. Revista de la Sociedad Geológica de España, 12, 309-327.

Proenza, J.A., Gervilla, F., Melgarejo, J.C., Bodinier, J.-L., 1999b. Al- and Cr-rich chromitites from the Mayarí-Baracoa Ophiolitic Belt (Eastern Cuba): consequence of interaction between volatile-rich melts and peridotite in suprasubduction mantle. Economic Geology, 94, 547-566.

Proenza, J.A., Zaccarini, F., Lewis, J.F., Longo, F., Garuti, G., 2007. Chromite composition and platinum-group mineral assemblage of PGE-rich Loma Peguera chromitites, Loma Caribe peridotite, Dominican Republic. Canadian Mineralogist, 45, 211-228.

Salters, V.J.M., Stracke, A., 2004. Composition of the depleted mantle. Geochemistry Geophysics Geosystems, 5(5), Q05004. doi:10.1029/2003GC000597.

Schellekens, J.H., 1998. Geochemical evolution and tectonic history of Puerto Rico. In: Lidiak, E.G., Larue, D.K. (eds.). Tectonics and geochemistry of the northeastern Caribbean. Geological Society of America, 322 (Special Paper), 35-66.

Sharma, M., Wasserburg, G.J., 1996. The neodymium isotopic compositions and rare earth patterns in highly depleted ultramafic rocks. Geochimica et Cosmochimica Acta, 60, 4537-4550.

Snow, J.E., Dick, H.J.B., 1995. Pervasive magnesium loss by marine weathering of peridotite. Geochimica et Cosmochimica Acta, 59(20), 4219-4235.

Stern, R.J., 2004. Subduction initiation: spontaneous and induced. Earth and Planetary. Science Letters, 226, 275-292.

Su, Y., Langmuir, C.H., 2003. Global MORB chemistry compilation at the segment scale. Ph.D. Thesis. New York, Columbia University.

Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (eds.). Magmatism in the Ocean Basins. Geological Society of London, 42 (Special Publications), 313-345.

Tamura, A., Arai, S., 2006. Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos, 90, 43-56.

van Achterberg, E., Ryan, C.G., Jackson, S.E., Griffin, W., 2001. Data reduction software for LA-ICP-MS. In: Sylvester, P. (ed.). Laser ablation ICP-MS in the Earth Science. Mineralogical Association of Canada, 29, 239-243.

Vernières, J., Godard, M., Bodinier, J.-L., 1997. A plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth’s upper mantle. Journal of Geophysical Research, 102, 24771-24784.

Volckmann, R.P., 1984. Upper Cretaceous stratigraphy of southwest Puerto Rico: A revision. U.S. Geological Survey Bulletin, 1537-A, A73-A83.

Walter, M.J., Sisson, T.W., Presnall, D.C., 1995. A mass proportion method for calculating melting reactions application to melting of model upper mantle lherzolite. Earth and Planetary Science Letters, 135, 77-90.

You, C.-F., Castillo, P.R., Gieskes, J.M., Chan, L.H., Spivack, A.J., 1996. Trace element behavior in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters, 140, 41-52.




Most read articles by the same author(s)

1 2 > >>