In situ thermochemical sulfate reduction during ore formation at the Itxaspe Zn-(Pb) MVT occurrence (Basque-Cantabrian basin, Northern Spain)

Authors

  • À. PIQUÉ Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelonac/ Martí i Franquès s/n, 08028 Barcelona, Spain
  • À. CANALS I SABATÉ Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelonac/ Martí i Franquès s/n, 08028 Barcelona, Spain
  • J.R. DISNAR Institut des Sciences de la Terre d’Orléans, UMR 6113, CNRS-INSU, Université d’Orléans1A Rue de la Férollerie, 45071 Orléans Cédex 2, France
  • F. GRANDIA I BORRÀS Amphos 21Pg. de Rubí 29-31, 08197 Valldoreix, Spain

DOI:

https://doi.org/10.1344/105.000001448

Keywords:

Bitumen, Thermochemical sulfate reduction, Mississippi Valley-type deposits, Basque-Cantabrian basin

Abstract

Organic matter is thought to play a role in the genesis of many Mississippi Valley-type (MVT) deposits, actino as a reducing agent during thermochemical sulfate reduction (TSR). Although TSR is an extremely slow reaction t low temperatures (lt;100ºC), under favorable conditions it may supply the necessary reduced sulfur during ore formation. To test this hypothesis, the Itxaspe Zn-(Pb) MVT occurrence in the Basque-Cantabrian basin (Northern Spain) was studied. Sphalerite, the main ore phase, is generally found disseminated in Urgonian (Lower Cretaceous) carbonates, and in close relationship with solid bitumen. The bitumen source rock was very likely deposited in a marine marginal setting. Differences in composition of the bitumen samples are attributed to a fractionation during hydrocarbon expulsion and/or migration. The fluids involved in ore deposition were low temperature (Th ~130ºC), Na-Ca-Cl-(K-Mg)-type brines (salinities ~12.5 equiv. mass % NaCl). The origin of brine solutes (including sulfate) is related to the dissolution of Mesozoic evaporite units, although the contribution of evaporated seawater brines cannot be ruled out. The temperatures of ore deposition, the close relationship between the bitumen and ore phases, the presence of aromatic sulfur-bearing compounds and the δ34S of sulfides and sulfates are consistent with an in situ TSR during ore formation in the Itxaspe Zn-(Pb) occurrence. Therefore, at least for small mineralizations like Itxaspe, our conclusion is that the necessary reduced sulfur can be supplied by TSR during ore genesis at the site of metal deposition.

References

Agirrezabala, L.M., Dorronsoro, C., Permanyer, A., 2008. Geochemical correlation of pyrobitumen fills with host mid- Cretaceous Black Flysch Group (Basque-Cantabrian Basin, western Pyrenees). Organic Geochemistry, 38(8), 1185-1188.

Bakker, R.J., 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1-3), 3-23.

Barbanson, L., 1987. Les minéralizations Zn, Pb, Ba, Hg, Cu de socle et de couverture carbonatés de la province de Santander (Nord de l’Espagne). Thèse d’Etat. Université d’Orléans, 292 pp.

Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3), 683-684.

Boyce, A.J., Fallick, A.E., Hamilton, P.J., Elorza, J., 1990. Diagenesis of celestite in quartz geodes from the BasqueCantabric basin, Northern Spain: Evidence from sulphur and strontium isotopes. Chemical Geology, 84(1-4), 354-356.

Bustillo, M., Ordóñez, S., 1995. Lower Cretaceous Pb-Zn ores of Cantabria, Northern Spain: New considerations based on petrological and geochemical evidence. Transactions of Institution of Mining and Metallurgy, 104 Section B, 55-65.

Carracedo, M., Larrea, F.J., Alonso, A., 1999. Estructura y organización de las coladas submarinas: características de las lavas almohadilladas de edad Cretácica que afloran en la cordillera Vasco-Cantábrica. Estudios Geológicos, 55, 209-222.

Charef, A., Sheppard, S.M.F., 1984. Carbon and oxigen isotope analysis of calcite or dolomite associated with organic matter. Isotope Geoscience, 2, 325-333.

Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., Zak, I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretations. Chemical Geology, 28, 199-260.

Cross, M.M., Manning, D.A.C, Bottrell, S.H., Worden, R.H., 2004. Thermochemical sulphate reduction (TSR): experimental determination of reaction kinetics and implications of the observed reaction rates for petroleum reservoirs. Organic Geochemistry, 35(4), 393-404.

Davis, D.W., Lowenstein, T.K., Spencer, R.J., 1990. Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaClMgCl2-H2O and NaCl-CaCl2-H2O. Geochimica et Cosmochimica Acta, 54(3), 591-601.

Ding, K., Li, S., Yue, C., Zhong, N., 2008. A simulation on the formation of organic sulfur compounds in petroleum from thermochemical sulfate reduction. Journal of Fuel Chemistry and Technology, 36(1), 48-54.

Disnar, J.R., 1996. A comparison of mineralization histories for two MVT deposits, Trèves and Les Malines (Causses basin, France), based on the geochemistry of associated organic matter. Ore Geology Reviews, 11(1-3), 133-156.

Eseme, E., Littke, R., Krooss, B.M., Schwarzbauer, J., 2007. Experimental investigation of the compositional variation of petroleum during primary migration. Organic Geochemistry, 38(8), 1373-1397.

EVE, 1995. Mapa geológico del País Vasco. Scale 1:100.000. Bilbao, Ente Vasco de la Energía, 345 pp., map.

Fernández-Martínez, J., Velasco, F., 1996. The Troya Zn-Pb carbonate-hosted sedex deposit, Northern Spain. In: Sangster, D.F. (ed.). Carbonate hosted lead-zinc deposits.Society of Economic Geologists Special Publication, 4, 364-377.

Fontes, J.Ch., Matray, J.M., 1993. Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts. Chemical Geology, 109(1-4), 149-175.

García-Mondéjar, J., 1989. Strike-slip subsidence of the BasqueCantabrian Basin of northern Spain and its relationship to Aptian-Albian opening of the Bay of Biscay. In: Tankard, A.J., Balkwill, H.R. (eds.). Extensional tectonics and stratigraphy of the North Atlantic margins. American Association of Petroleum Geologists memoir, 46, 395-409.

García-Mondéjar, J., 1990. The Aptian-Albian carbonate episode of the Basque-Cantabrian Basin (Northern Spain): General characteristics, controls and evolution. In: Tucker, M. (ed.). Carbonate platform and basin sedimentary systems. International Association of Sedimentologists Special Publication, 9, 257-290.

García-Mondéjar, J., Agirrezabala, L.M., Aranburu, A., Fernández-Mendiola, P.A., Gómez-Pérez, I., López-Horgue, M., Rosales, I., 1996. Aptian-Albian tectonic pattern of the Basque-Cantabrian Basin (Northern Spain). Geological Journal, 31(1), 13-45.

Gil, P.P., 1991. Las mineralizaciones de hierro del Anticlinal de Bilbao: Mineralogía, geoquímica y metalogenia. Doctoral Thesis. Universidad del País Vasco, 343 pp.

Goldhaber, M.B., Kaplan, I.R., 1975. Controls and consequences of sulfate reduction rates in recent marine sediments. Soil Science, 119(1), 42-55.

Gómez, M., Vergés, J., Riaza, C., 2002. Inversion tectonics of the northern margin of the Basque Cantabrian Basin. Bulletin de la Société Géologique de France, 173(5), 449-459.

Grandia, F., Canals, À., Cardellach, E., Banks, D.A., Perona, J., 2003. Origin of ore-forming brines in sediment-hosted ZnPb deposits of the Basque-Cantabrian Basin, Northern Spain. Economic Geology, 98(7), 1397-1411.

Hanin, S., Adam, P., Kowalewski, I., Huc, A.Y., Carpentier, B., Albrecht, P., 2002. Bridgehead alkylated 2-thiaadamantanes: novel markers for sulfurization processes occurring under high thermal stress in deep petroleum reservoirs. Chemical Communications, 16, 1750-1751.

Herrero, J.M., 1989. Las mineralizaciones de Zn, Pb, F en el sector occidental de Vizcaya: Mineralogía, geoquímica y metalogenia. Doctoral Thesis. Universidad del País Vasco, 285 pp.

Ho, T.Y., Rogers, M.A., Drushel, H.V., Koons, C.B., 1974. Evolution of sulfur compounds in crude oils. The American Association of Petroleum Geologists Bulletin, 58(11), 2338-2348.

Hu, M.A., Disnar, J.R., Barbanson, L., Suarez-Ruiz, I., 1998. Processus d’altération thermique, physico-chimique et biologique de constituants organiques et genèse d’une minéralisation sulfurée: le gîte Zn-Pb de La Florida (Cantabria, Espagne). Canadian Journal of Earth Sciences, 35(8), 936-950.

IGME-EVE, 2000. Mapa Metalogenético del País Vasco. Scale 1:1,000,000. Unpublished report.

International Committee for Coal Petrology, 1963. International Handbook of Coal Petrography, Paris, 2nd edition, Centre National de la Recherche Scientifique CNRS, 184 pp.

Jacob, H., 1989. Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”). International Journal of Coal Geology, 11(1), 65-79.

Jørgensen, B.B., Isaksen, M.F., Jannasch, H.W., 1992. Bacterial sulfate reduction above 100ºC in deep sea hydrothermal vent sediments. Science, 258 (5089), 1756-1757.

Kesler, S.E., Jones, H.D., Furman, F.C., Sassen, R., Anderson, W.H., Kyle J.R., 1994. Role of crude oil in the genesis of Mississippi Valley-type deposits: Evidence from the Cincinnati arch. Geology, 22(7), 609-612.

Kiyosu, Y., Krouse, H.R., 1990. The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect. Geochemical Journal, 24(1), 21-27.

Lafargue, E., Marquis, F., Pillot, D., 1998. Rock-Eval 6 applications in hydrocarbon exploration, production and soil contamination studies. Revue de l’Institut Français du Pétrole, 53(4), 421-437.

Landis, C.R., Castaño, J.R., 1995. Maturation and bulk chemical properties of a suite of solid hydrocarbons. Organic Geochemistry, 22(1), 137-149.

Leventhal, J.S., 1990. Organic matter and thermochemical sulfate reduction in the Viburnum Trend, southeast Missouri. Economic Geology, 85(3), 622-632.

Machel, H.G., 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings - old and new insights. Sedimentary Geology, 140(1-2), 143-175.

Manzano, B.K., Fowler, M.G., Machel, H.G., 1997. The influence of thermochemical sulphate reduction on hydrocarbon composition in Nisku reservoirs, Brazeau river area, Alberta, Canada. Organic Geochemistry, 27(7-8), 507-521.

Martínez del Olmo, W., Mallo, J.M., 2002. Non-renewable energy resources: oil and gas. In: Gibbons, W., Moreno, T. (eds.). Geology of Spain. Blackwell, 494-499.

Mort, A., 2004. Mécanismes de formation et évolution des pyrobitumes dans les réservoirs pétroliers: cas naturels et approches expérimentales. Doctoral Thesis. Université d’Orléans, 248 pp.

Mueller, E., Philp, R.P., Allen, J., 1995. Geochemical characterization and relationship of oils and solid bitumens from SE Turkey. Journal of Petroleum Geology, 18(3), 289-308.

Najarro, M., Peñalver, E., Rosales, I., Pérez-De La Fuente, R., Daviero-Gomez, V., Gomez B., Delclòs, X., 2009. Unusual concentration of Early Albian arthropod-bearing amber in the Basque-Cantabrian Basin (El Soplao, Cantabria, Northern Spain): Palaeoenvironmental and palaeobiological implications. Geologica Acta, 7 (4), 363-387.

Nali, M. Caccialanza, G., Ghiselli, C., Chiaramonte, M.A., 2000. Tmax of asphaltenes: a parameter for oil maturity assessment. Organic Geochemistry, 31(12), 1325-1332.

Oakes, C.S., Bodnar, R.J., Simonson, J.M., 1990. The system NaCl-CaCl2-H2O: I. The ice liquidus at 1 atm total pressure. Geochimica et Cosmochimica Acta, 54(3), 603-610.

Orr, W.L., 1977. Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas. In: Campos, R., Goni, J. (eds). Advances in Organic Geochemistry. Madrid, Enadisma, 571-597.

Ourisson, G., Albrecht, P., 1992. Hopanoids . 1. Geohopanoids: the most abundant natural product on Earth? Accounts of Chemical Research, 25(9), 398-402.

Outokumpu-EVE, 1995. Campaña de sondeos en el P.I. Andutz. Area de Itxaspe. Unpublished report.

Perona, J., Cardellach, E., Canals, À., 2007. Origin of diapirrelated Zn-Pb deposits in the Basque-Cantabrian Basin (Northern Spain). In: Andrew, C.J. et al. (eds.). Proceedings of the ninth biennial SGA meeting, Dublin. Irish Association for Economic Geology, Digging Deeper, 2, 1303-1306.

Perona, J., Disnar, J.R., Laggoun-Défarge, F., Canals, À., 2004. Estudio de la materia orgánica asociada a depósitos peridiapíricos de Zn-Pb de la cuenca Vasco-Cantábrica. Macla, 2, 39-40.

Piqué, À., Canals, À., Grandia, F., Banks, D.A. 2008. Mesozoic fluorite veins in NE Spain record regional base metal-rich brine circulation through basin and basement during extensional events. Chemical Geology 257(1-2), 139-152.

Powell, T.G., Macqueen, R.W., 1984. Precipitation of sulfide ores and organic matter: sulfate reactions at Pine Point, Canada. Science, 224(1), 63-66.

Quesada, S., Dorronsoro, C., Robles, S., Chaler, R., Grimalt, J.O., 1997. Geochemical correlation of oil from the Ayoluengo field to Liassic black shale units in the southwestern Basque-Cantabrian Basin (northern Spain). Organic Geochemistry, 27(1-2), 25-40.

Ramanampisoa, L., Disnar, J.R., 1994. Primary control of paleoproduction on organic matter preservation and accumulation in the Kimmeridge rocks of Yorkshire (UK). Organic Geochemistry, 21(12), 1153-1167.

Rat, P., 1987. The Basque-Cantabrian basin between the Iberian and European plates: Some facts but still many problems. Revista de la Sociedad Geológica de España, 1(3-4), 327-348.

Riediger, C.L., 1993. Solid bitumen reflectance and Rock-Eval Tmax as maturation indices: an example from “Nordegg Member”, Western Canada Sedimentary Basin. International Journal of Coal Geology, 22(3-4), 295-315.

Selby, D., Creaser, R.A., Dewing, K., Fowler, M., 2005. Evaluation of bitumen as a 187Re-187Os geochronometer for hydrocarbon maturation and migration: A test case from the Polaris MVT deposit, Canada. Earth and Planetary Science Letters, 235(1-2), 1-15.

Simón, S., Canals, À., Grandia, F., Cardellach, E., 1999. Estudio isotópico y de inclusiones fluidas en depósitos de calcita y dolomita del sector oeste del Anticlinal de Bilbao y su relación con las mineralizaciones de Fe-Zn-Pb. Boletín de la Sociedad Española de Mineralogía, 22, 55-71.

Spangenberg, J.E., Macko, S.A., 1998. Organic geochemistry of the San Vicente zinc-lead district, eastern Pucará Basin, Peru. Chemical Geology, 146(1-2), 1-23.

Thom, J., Anderson, G.M., 2008. The role of thermochemical sulfate reduction in the origin of Mississippi Valleytype deposits. I. Experimental results. Geofluids, 8(1), 16-26.

Toland, W.G., 1960. Oxidation of organic compounds with aqueous sulfate. Journal of the American Chemical Society, 82(8), 1911-1916.

Velasco, F., Herrero, J.M., Gil, P.P., Álvarez, L., Yusta, I., 1994. Mississippi Valley-type, Sedex and iron deposits in lower Cretaceous rocks of the Basque-Cantabrian basin, Northern Spain. In: Fontboté, L., Boni, M. (eds.). Sediment-hosted Zn-Pb ores. Society for Geology Applied to Mineral Deposits Special Publication, 10, 246-270.

Velasco, F., Herrero, J.M., Yusta, I., Alonso, J.A., Seebold, I., Leach, D., 2003. Geology and geochemistry of the Reocín zinc-lead deposit, Basque-Cantabrian basin, Northern Spain. Economic Geology, 98(7), 1371-1396.

Zhang, T., Ellis, G.S., Walters, C.C., Kelemen, S.R., Wang, K., Tang, Y., 2008. Geochemical signatures of thermochemical sulfate reduction in controlled hydrous pyrolysis experiments. Organic Geochemistry, 39(3), 308-328.

Zhang, T., Ellis, G.S., Wang, K., Walters, C.C., Kelemen, S.R., Gillaizeau, B., Tang, Y., 2007. Effect of hydrocarbon type on thermochemical sulfate reduction. Organic Geochemistry, 38(6), 897-910.

Downloads

Published

2009-10-06

Issue

Section

Articles