Geology of the Cerro Quema Au-Cu deposit (Azuero Peninsula, Panama)

Authors

  • I. CORRAL Departament de Geologia, Universitat Autònoma de Barcelona (UAB). 08193 Barcelona, Spain.
  • A. GRIERA Departament de Geologia, Universitat Autònoma de Barcelona (UAB). 08193 Barcelona, Spain.
  • D. GÓMEZ-GRAS Departament de Geologia, Universitat Autònoma de Barcelona (UAB). 08193 Barcelona, Spain.
  • M. CORBELLA Departament de Geologia, Universitat Autònoma de Barcelona (UAB). 08193 Barcelona, Spain.
  • À. CANALS I SABATÉ Facultat de Geologia, Universitat de Barcelona (UAB). 08028 Barcelona, Spain.
  • M. PINEDA FALCONETT Departamento de Geografía, Universidad de Panamá082304747, Chitré, Panamá.
  • E. CARDELLACH Departament de Geologia, Universitat Autònoma de Barcelona (UAB). 08193 Barcelona, Spain.

DOI:

https://doi.org/10.1344/105.000001742

Keywords:

Panama, Cerro Quema, Au-Cu High sulfidation epithermal deposit, Fore-arc basin, Arc-magmatism

Abstract

The Cerro Quema district, located on the Azuero Peninsula, Panama, is part of a large regional hydrothermal system controlled by regional faults striking broadly E-W, developed within the Río Quema Formation. This formation is composed of volcanic, sedimentary and volcano-sedimentary rocks indicating a submarine depositional environment, corresponding to the fore-arc basin of a Cretaceous–Paleogene volcanic arc. The structures observed in the area and their tectono-stratigraphic relationship with the surrounding formations suggest a compressive and/or transpressive tectonic regime, at least during Late Cretaceous–Oligocene times. The igneous rocks of the Río Quema Formation plot within the calc-alkaline field with trace and rare earth element (REE) patterns of volcanic arc affinity. This volcanic arc developed on the Caribbean large igneous province during subduction of the Farallon Plate. Mineralization consists of disseminations of pyrite and enargite as well as a stockwork of pyrite and barite with minor sphalerite, galena and chalcopyrite, hosted by a subaqueous dacitic lava dome of the Río Quema Formation. Gold is present as submicroscopic grains and associated with pyrite as invisible gold. A hydrothermal alteration pattern with a core of advanced argillic alteration (vuggy silica with alunite, dickite, pyrite and enargite) and an outer zone of argillic alteration (kaolinite, smectite and illite) has been observed. Supergene oxidation overprinted the hydrothermal alteration resulting in a thick cap of residual silica and iron oxides. The ore minerals, the alteration pattern and the tectono-volcanic environment of Cerro Quema are consistent with a high sulfidation epithermal system developed in the Azuero peninsula during pre-Oligocene times

References

Adamek, S., Frohlich, C., Pennington, W.D., 1988. Seismicity of the Caribbean-Nazca boundary; constraints on microplate tectonics of the Panama region. Journal of Geophysical Research, 93, 2053-2075.

Arribas, A.Jr., Hedenquist, J.W., Itaya, T., Okada, T., Concepcion, R.A., Garcia, J.S.Jr., 1995. Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 ka in northern Luzon, Philippines. Geology, 23, 337-340.

Berger, B.R., Henley, R.W., 1989. Advances in the understanding of epithermal gold-silver deposits, with special reference to

the Western United States. Economic Geology Monographs, 6, 405-423.

Binns, R.A., Barriga, F.J.A.S., Miller, D.J., 2007. Leg 193 Synthesis: Anatomy of an active felsic-hosted hydrothermal system, eastern Manus Basin, Papua New Guinea. In: Barriga, F.J.A.S., Binns, R.A., Miller, D.J., Herzig., P.M. (eds.). Proceedings of the Ocean Drilling Program, Scientific Results. Texas, College Station, Ocean Drilling Program, 193, 1-71.

Bourgois, J., Azema, J., Tournon, J., Bellon, H., Calle, B., Parra, E., Toussaint, J.F., Glacon, G., Feinberg, H., Dewever, P., Origlia,

I. 1982. Ages and Structures of the Basic and Ultrabasic Complexes of the Pacific Coast between 3-Degrees-N and 12-Degrees-N (Colombia, Panama and Costa-Rica). Bulletin de La Société Géologique de France, 24, 545-554.

Buchs, D.M., 2008. Late Cretaceous to Eocene geology of the South Central American fore-arc area (southern Costa Rica and western Panama): Initiation and evolution of an intraoceanic convergent margin. Doctoral Thesis. Switzerland, Université de Lausanne, 230pp.

Buchs, D.M., Baumgartner, P.O., Baumgartner-Mora, C., Bandini, A., Jackett, S-J., Diserens, M-O., Stucki, J., 2009. Seamount accretion and melange formation of the Osa Peninsula (southern Costa Rica): Eocene–Miocene mass wasting and tectonic processes along the Middle American Trench. In: James, K., Lorente, M.A., Pindell, J. (eds.). The geology and evolution of the region between North and South America. Geological Society of London, Special Publications, 411-456.

Buchs, D.M., Arculus, R.J., Baumgartner, P.O., BaumgartnerMora, C., Ulianov, A., 2010. Late Cretaceous Arc Development on the SW margin of the Caribbean Plate: Insights from the Golfito (Costa Rica) and Azuero (Panama) Complexes. Geochemistry, Geophysics, Geosystems, 11(7), 35pp.

Coates, A.G., Collins, L.S., Aubry, M.-P., Berggren, W.A., 2004. The Geology of the Darien, Panama, and the late MiocenePliocene collision of the Panama arc with northwestern South America. Geological Society of America Bulletin, 116,

-1344.

Coates, A.G., Jackson, J.B.C., Collins, L.S., Cronin, T.M., Dowsett, H.J., Bybell, L.M., Jung, P., Obando, J.A., 1992. Closure of the Isthmus of Panama: The near-shore marine record of Costa Rica and western Panama. Geological Society of America Bulletin, 104, 814-828.

Corral, I., 2008. El dipòsit d’Au-Cu de “La Pava” (Península d’Azuero, Panamà): caracterització geològica i mineralògica. Master of Science. Universitat Autònoma de Barcelona, 31pp.

de Boer, J.Z., Drummond, M.S., Bordelon, M.J., Defant, M.J., Bellon, H., Maury, R.C., 1995. Cenozoic magmatic phases of the Costa Rican island arc (Cordillera de Talamanca). Geological Society of America, 295, 35-55.

Del Giudice, D., Recchi, G., 1969. Geología del área del Proyecto Minero de Azuero. Informe técnico preparado para el gobierno de la República de Panamá por las Naciones Unidas. Panamá City (Panamá), Gobierno de la República de Panamá, 48pp.

Denyer, P., Alvarado, G.E., 2007. Mapa Geológico de Costa Rica 1:400.000. Librería Francesa S.A.

Dirección General de Recursos Minerales, 1976. Panama Geologic Map (Mapa geológico de la República de Panamá), scale 1:250.000. Panama City, Panama.

Di Marco, G., Baumgartner, P.O., Channell, J.E.T., 1995. Late Cretaceous-early Tertiary paleomagnetic data and a revised tectonostratigraphic subdivision of Costa Rica and western Panama. Geological Society of America, 295, 1-27.

Duque-Caro, H., 1990. Neogene stratigraphy, paleoceanography and paleobiogeography in Northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 77, 203-234.

Escalante, G., 1990. The geology of southern Central America and western Colombia In: Dengo, G., Case, J.E. (eds.). The Caribbean Region. Boulder, Colorado, Geological Society of America, The Geology of North America, H, 201-230.

Ferencic, A., 1970. Porphyry copper mineralization in Panama. Mineralium Deposita, 5, 383-389.

Ferencic, A., 1971. Metallogenic provinces and epochs in southern Central America. Mineralium Deposita, 6, 77-88.

Fisher, D.M., Gardner, T.W., Marshall, J.S., Sak, P.B., Protti, M., 1998. Effect of subducting sea-floor roughness on fore-arc kinematics, Pacific coast, Costa Rica. Geology, 26, 467-470.

Gardner, T., Marshall, J., Merritts, D., Bee, B., Burgette, R., Burton, E., Cooke, J., Kehrwald, N., Protti, M., Fisher, D., Sak, P., 2001. Holocene fore-arc block rotation in response to seamount subduction, southeastern Peninsula de Nicoya, Costa Rica. Geology, 29, 151-154.

Giggenbach, W.F., 1992. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Economic Geology, 87, 1927-1944.

Goossens, P.J., Rose, W.I.J., Flores, D., 1977. Geochemistry of tholeiites of the Basic Igneous Complex of northwestern South America. Geological Society of America Bulletin, 88, 1711-1720.

Hannington, M.D., 1997. The Porphyry-Epithermal-VMS Transition: Lessons from the Iskut River Area, British Columbia, and Modern Island Arcs. Society of Economic Geology Newsletter, 29, 12-13.

Harmon, R.S., 2005. Geological development of Panama. Water Science and Technology Library, 52, 45-62.

Hauff, F., Hoernle, K., van den Bogaard, P., Alvarado, G., Garbe-Schoenberg, D., 2000. Age and geochemistry of basaltic complexes in western Costa Rica; contributions to the geotectonic evolution of Central America. Geochemistry Geophysics Geosystems, 1(5), 41pp.

Hedenquist, J.W., 1987. Mineralization associated with volcanicrelated hydrothermal systems in the Circum-Pacific basin. Transactions of the Circum-Pacific Energy and Mineral Resources Conference, 4, 513-524.

Hedenquist, J.W., Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370, 519-527.

Herzig, P.M., Hannington, M.D., Arribas, A.Jr., 1998. Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal system. Mineralium Deposita, 33, 226-237.

Hoernle, K., Hauff, F., 2007. Oceanic Igneous Complexes. Central America, geology, resources and hazards, 1, 523-548.

Hoernle, K., Hauff, F., van den Bogaard, P., 2004. 70 m.y. history (139-69 Ma) for the Caribbean large igneous province. Geology, 32, 697-700.

Hoernle, K., van den Bogaard, P., Werner, R., Lissinna, B., Hauff, F., Alvarado, G., Garbe-Schonberg, D., 2002. Missing history (16-71 Ma) of the Galapagos hotspot: Implications for the tectonic and biological evolution of the Americas. Geology, 30, 795-798.

Horlacher, C.F., Lehmann, J.H., 1993. Regional Geology, Geochemistry and Exploration potential of the central Cerro Quema concession, Panama. Unpublished report, 36pp.

Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, Revue Canadienne des Sciences de la Terre, 8, 523-548.

Kellogg, J.N., Vega, V., Stallings, T.C., Aiken, C.L.V., 1995. Tectonic development of Panama, Costa Rica, and the Colombian Andes; constraints from Global Positioning System geodetic studies and gravity. Geological Society of America, 295 (Special Paper), 75-90.

Kerr, A.C., Marriner, G.F., Tarney, J., Nivia, A., Saunders, A.D., Thirlwall, M.F., Sinton, C.W., 1997. Cretaceous basaltic terranes in western Colombia: Elemental, chronological and Sr-Nd isotopic constraints on petrogenesis. Journal of Petrology, 38, 677-702.

Kesler, S.E., Campbell, I.H., Smith, C.N., Hall, C.M., Allen, C.M., 2005. Age of the Pueblo Viejo Gold-Silver Deposit and its significance to models for High-Sulfidation Epithermal Mineralization. Economic Geology, 100, 253-272.

Kesler, S.E., Russell, N., Seaward, M., Rivera, J., McCurdy, K., Cumming, G.L., Sutter, J.F., 1981. Geology and geochemistry of sulfide mineralization underlying the Pueblo Viejo gold-silver oxide deposit, Dominican Republic. Economic Geology, 76, 1096-1117.

Kesler, S.E., Sutter, J.F., Issigonis, M.J., Jones, L.M., Walker, R.L., 1977. Evolution of porphyry copper mineralization in an oceanic island arc; Panama. Economic Geology, 72, 1142-1153.

Kolarsky, R.A., Mann, P., Monechi, S., Meyerhoff-Hull, D., Pessagno, E.A., 1995. Stratigraphic development of southwestern Panama as determined from integration of marine seismic data and onshore geology. Geological Society of America Special Paper, 295, 159-200.

Kolarsky, R.A., Mann, P., 1995. Structure and neotectonics of an oblique-subduction margin, southwestern Panama. Geological Society of America Special Paper, 295, 131-157.

Krawinkel, H., Wozazek, S., Krawinkel, J., Hellmann, W., 1999. Heavy-mineral analysis and clinopyroxene geochemistry applied to provenance analysis of lithic sandstones from the Azuero-Soná Complex (NW Panama). Sedimentary Geology, 124, 149-168.

Krawinkel, J., and Seyfried, H., 1994. Struktur und Kinematik im Fore-arc der suedlichen zentralamerikanischen Landbruecke. Bonn, Terra Nostra, 2(94), 47-48.

Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lemeyre, J., Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Wooley, A.R., Zanettin, B., 1989. A classification of igneous rocks and glossary of terms. Oxford, Blackwell Scientific, 193pp.

Leach, T.M., 1992. Petrological Evaluation of the High Sulphidation Systems in the La Pava and Cerro Quema Prospect Areas, Panama, for Cyprus Gold Company. Unpublished report, 55pp.

Lissinna, B., Hoernle, K., van den Bogaard, P., 2002. Northern migration of arc volcanism in western Panama: evidence for subduction erosion? Eos Transactions, American Geophysical Union, 83, 1463-1464.

Lissinna, B., 2005. A profile through the Central American Landbridge in western Panama: 115 Ma Interplay between the Galápagos Hotspot and the Central American Subduction Zone. Doctoral Thesis. Germany, Christian-AlbrechtsUniversität zu Kiel, 102pp.

Lissinna, B., Hoernle, F., Hauff, P., van den Bogaard, P., Sadofsky, S., 2006. The Panamanian island arc and Galápagos hotspot: A case study for the long-term evolution of arc/hotspot interaction. Geophysical Research Abstracts, 8, 05106.

Mann, P., Kolarsky, R.A., 1995. East Panama deformed belt; structure, age, and neotectonic significance. Geological Society of AAmerica, 295 (Special Paper), 111-130.

Mann, P., Corrigan, J., 1990. Model for late Neogene deformation in Panama. Geology, 18, 558-562.

Marshall, J.S., Idleman, B.D., Gardner, T.W., Fisher, D.M., 2003. Landscape evolution within a retreating volcanic arc, Costa Rica, Central America. Geology, 31(5), 419-422.

Maury, R.C., Defant, M.J., Bellon, H., De Boer, J.Z., Stewart, R.H., Coten, J., 1995. Early Tertiary arc volcanic from eastern Panama. Geological Society of America, 295 (Special Paper), 30-34.

Metti, A., Recchi, G., 1976. Geología de la Península de Sona e Isla de Coiba. Boletín de Geología Publicación Especial, 541-553.

Metti, A., Recchi, G., Esquivel, D., 1972. Mapa geológico SonaIsla de Coiba: scale 1:250.000. Ministerio de Comercio e Industrias, Panama City (Republica de Panamá). Nelson, C.E., 1995. Porphyry copper deposits of southern Central America. Arizona Geological Society Digest, 20, 553-565.

Nelson, C.E., 2000. Volcanic domes and gold mineralization in the Pueblo Viejo District, Dominican Republic. Mineralium Deposita, 35, 511-525.

Nelson, C.E., 2007. Metallic mineral resources. In: Bundschuh, J., Alvarado, G.E. (eds.). Central America. Geology, Resources and Hazards. The Netherlands, Taylor & Francis, 32 (Chapter), 885-915.

Nelson, C.E., Nietzen, F., 2000. Metalogenia del oro y cobre en América Central. Revista Geológica de América Central, 23, 25-41.

Paulick, H., Vanko, D.A., Yeats, C.J., 2004. Drill core-based facies reconstruction of a deep-marine felsic volcano hosting an active hydrothermal system (Pau Ridge, Papua New Guinea, ODP Leg 193). Journal of Volcanology and Geothermal Research, 130, 31-50.

Pindell, J., Kennan, L., 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In: James, K., Lorente, M.A., Pindell, J. (eds.). The geology and evolution of the region between North and South America. Geological Society of London, 328 (Special Publications), 1-55.

Recchi, G., Miranda, R., 1977. Calizas de los Planes-Guaniquito (Tonosí). Unpublished report, Panama City, Dirección General de Recursos Minerales, 27pp.

Révillon, S., Hallot, E., Arndt, N.T., Chauvel, C., Duncan, R.A., 2000. A complex history for the Caribbean plateau: Petrology, geochemistry and geochronology of the Beata Ridge, South Hispaniola. Journal of Geology, 108, 641-661.

Rye, R.O., 1993. The evolution of magmatic fluids in the epithermal environment; the stable isotope perspective. Economic Geology, 88, 733-752.

Sak, P.B., Fisher, D.M., Gardner, T.W., 2004. Effects of subducting seafloor roughness on upper plate vertical tectonism: Osa Peninsula, Costa Rica. Tectonics, 23, 16pp.

Sillitoe, R.H., 1989. Gold deposits in western Pacific island arcs; the magmatic connection. Economic Geology Monographs,

, 274-291.

Sillitoe, R.H., 1995. Exploration of porphyry copper lithocaps. Publication Series – Australasian. Institute of Mining and Metallurgy, 9(95), 527-532.

Sillitoe, R.H., Hannington, M.D., Thompson, J.F.H., 1996. High sulfidation deposits in the volcanogenic massive sulfide environment. Economic Geology, 91, 204-212.

Sillitoe, R.H., Hall, D.J., Redwood, S.D., Waddell, A.H., 2006. Pueblo Viejo High-sulfidation epithermal goldsilver deposit, Dominican Republic: a new mode of formation beneath barren limestone cover. Economic Geology, 101, 1427-1435.

Silver, E.A., Reed, D.L., Tagudin, J.E., Heil, D.J., 1990. Implications of the North and South Panama thrust belts for the origin of the Panama Orocline. Tectonics, 9, 261-281.

Sinton, C.W., Duncan, R.A., Denyer, P., 1997. Nicoya Peninsula, Costa Rica; a single suite of Caribbean oceanic plateau magmas. Journal of Geophysical Research, 102(B7), 15, 507-15, 520.

Sinton, C.W., Duncan, R.A., Storey, M., Lewis, J., Estrada, J.J., 1998. An oceanic flood basalt province within the Caribbean Plate. Earth and Planetary Science Letters, 155, 221-235.

Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. Geological Society, 42 (Special Publications), 313-345.

Taboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J., Rivera, C., 2000. Geodynamics of the Northern Andes; subductions and intracontinental deformation (Colombia). Tectonics, 19, 787-813.

Torrey, C., Keenan, J., 1994. Cerro Quema Project, Panama, Prospecting in tropical and arid terrains. Toronto, Ontario, Canada, Unpublished report, 23pp.

Trenkamp, R., Kellogg, J.N., Freymueller, J.T., Mora, H.P., 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15, 157-171.

Tournon, J., Triboulet, C., Azéma, J., 1989. Amphibolites from Panama: anticlockwise P-T paths from a Preuper Cretaceous metamorphic basement in Istmian Central America. Journal of Metamorphic Geology, 7, 539-546.

Weyl, R., 1980. Geology of Central America. Berlin, Gebrueder Borntraeger, 2nd edition, 371pp.

White, N.C., 1991. High sulfidation epithermal gold deposits; characteristics and a model for their origin: Chishitsu Chosajo

Hokoku. Report-Geological Survey of Japan, 9-20.

Wegner, W., Wörner, G., Harmon, R.S., Jicha, B.R., 2011. Magmatic history and evolution of the Central American Land Bridge in Panama since Cretaceous times. Geological Society of America Bulletin, 123, 703-724.

Wörner, G., Harmon, R.S., Wegner, W., 2009. Geochemical evolution of igneous rocks and changing magma sources during the formation and closure of the Central American land bridge of Panama: Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge Terrane Collision. Geological Society of America Memoir, 204, 183-196.

Wörner, G., Harmon, R.S., Hartmann, G., Simon, K., 2005. Igneous Geology and Geochemistry of the Upper Río Chagres Basin. In: Singh, V.P., Harmon, R.S. (eds.). The Río Chagres, Panama: A Multidisciplinary Profile of a Tropical Watershed. Springer, 65-81.

Wörner, G., Harmon, R.S., Wegner, W., Singer, G., 2006. Linking America’s backbone: Geological development and basement rocks of central Panama. Mendoza (Argentina), 2-7 April 2006, Geological Society of America Conference “Backbone of the Americas”, Boulder (Colorado), Geological Society of America, Abstrstracts with Programs, 60.

Downloads

Published

2011-11-30