Morphology, biostratigraphy, and evolution of Pliocene-Pleistocene diatoms Proboscia barboi and Proboscia curvirostris

Authors

  • J.P. Andrade Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
  • P. Legoinha Geobiotec, Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
  • Z. Stroynowski Marine Geology Division, IPMA (Instituto Português do Mar e da Atmosfera) Rua Alfredo Magalhães Ramalho 6, 1495-006 Algés, Portugal CCMAR (Centro de Ciências do Mar do Algarve) Universidade do Algarve, 8005-139, Faro, Portugal
  • F. Abrantes Marine Geology Division, IPMA (Instituto Português do Mar e da Atmosfera) Rua Alfredo Magalhães Ramalho 6, 1495-006 Algés, Portugal CCMAR (Centro de Ciências do Mar do Algarve) Universidade do Algarve, 8005-139, Faro, Portugal

DOI:

https://doi.org/10.1344/GeologicaActa2019.17.9

Keywords:

Probosciaceae, Proboscis, Longitudinal ridges, Site U1340, Quaternary

Abstract

Proboscia barboi and Proboscia curvirostris are two important diatom biostratigraphic markers from the high latitudes of the North Pacific and North Atlantic Oceans, dating back to the Pliocene-Pleistocene time. This study analyzes the biostratigraphic events and describes the morphology of P. barboi and P. curvirostris, particularly the morphologic variations of the latter species, based on observations of samples of Core U1340A from the IODP Expedition 323 in the Bering Sea. In Site U1340, the First Occurrence of P. curvirostris is observed at 1.52Ma and its First Common Occurrence at 1.39Ma, where morphologic variations were found abundantly. The Last Occurrence of P. curvirostris was found at 0.33Ma, while P. barboi’s Last Occurrence is found at 0.67Ma. Based on the morphological similarity and known biostratigraphic distribution, previous authors have assumed that P. curvirostris descends from P. barboi, although this hypothesis is still in debate. At 1.39Ma P. curvirostris shows an increased size and thickness, which is typical of P. barboi, and some specimens display an incipient structure characteristic of P. curvirostris - the secondary spine. This morphology is intermediate between the two species and suggests an evolutionary transition from P. barboi to P. curvirostris. However, P. curvirostris already existed since 1.9Ma in the subarctic indicating that its speciation happened much earlier than 1.39Ma. Furthermore, since P. barboi co-occurs with P. curvirostris in the North Pacific, this evolutionary process was cladogenetic. Besides being evidence for a phylogenetic relationship, the abundant occurrence of intermediate forms at 1.39Ma may constitute a bioevent for a short time interval in the Bering Sea.

Author Biographies

P. Legoinha, Geobiotec, Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Departamento de Ciências da Terra

F. Abrantes, Marine Geology Division, IPMA (Instituto Português do Mar e da Atmosfera) Rua Alfredo Magalhães Ramalho 6, 1495-006 Algés, Portugal CCMAR (Centro de Ciências do Mar do Algarve) Universidade do Algarve, 8005-139, Faro, Portugal

Marine Geology Division

References

Abrantes, F., Gil, I., Lopes, C., Castro, M., 2005. Quantitative diatom analyses - A faster cleaning procedure. Deep-Sea Research Part I: Oceanographic Research Papers, 52(1), 189-198. https://doi.org/10.1016/j.dsr.2004.05.012

Akiba, F. 1986. Middle Miocene to Quaternary diatom biostratigraphy in the Nankai Trough and Japan Trench, and modified Lower Miocene through Quaternary diatom zones for middle-to-high latitudes of the North Pacific. Initial Reports of the Deep Sea Drilling Project, 87, 393-480. https://doi.org/10.2973/dsdp.proc.87.106.1986

Akiba, F., Yanagisawa, Y., 1986. Taxonomy, morphology and phylogeny of the Neogene diatom zonal marker species in the

middle-to-high latitudes of the North Pacific. Initial Reports of the Deep Sea Drilling Project, 87, 483-554. https://doi.org/10.2973/dsdp.proc.87.107.1986

Barron, J., 1985. Late Eocene to Holocene diatom biostratigraphy of the equatorial Pacific Ocean, Deep Sea Drilling Project

Leg 85. Initial Reports of the Deep Sea Drilling Project. US Government Printing Office, Washington, 85 (OCT), 413-456. https://doi.org/10.2973/dsdp.proc.85.108.1985

Barron, J.A., Gladenkov, A.Y., 1995. Early Miocene to Pleistocene diatom stratigraphy of Leg 145. Proceedings of the Ocean

Drilling Program, Scientific Results, 145, 3-19. https://doi.org/10.2973/odp.proc.sr.145.101.1995

Cande, S.C., Kent, D.V., 1995. Revised calibration of geomagnetic polarity time scale for the Late Cretaceous and Cenozoic.

Journal of Geophysical Research, 100, 6093-6095. https://doi.org/10.1029/94jb03098

Chappell, J., Omura, A., Esat, T., Mcculloch, M., Pandolfi, J., Ota, Y., Pillans, B., 1996. Reconciliation of late Quaternary sea levels derived from coral terraces Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters, 141, 227-236. https://doi.org/10.1016/0012-821x(96)00062-3

Expedition 323 Scientists, 2010. Bering Sea paleoceanography: Pliocene–Pleistocene paleoceanography and climate history

of the Bering Sea. IODP Preliminary Report, 323, https://doi.org/10.1002/2015pa002866

Expedition 323 Scientists, 2011. Site U1340. In: Takahashi, K., Ravelo, A.C., Zarikian, C.A., the Expedition 323 Scientists, 2011. Proceedings IODP 323. Tokyo, Integrated Ocean Drilling Program Management International, 1-81. https://doi.org/10.2204/iodp.sd.11.01.2011

Hajós, M., 1976. Upper Eocene and lower Oligocene Diatomaceae, Archaeomonadaceae, and Silicoflagellatae in Southwestern Pacific Sediments, DSDP Leg 29. Initial Reports of the Deep Sea Drilling Project, 35, 817-883. https://doi.org/10.2973/dsdp.proc.35.29chap1.1976

Hargraves, P.E., 1986. The relationship of some fossil diatom genera to resting spores. Proceedings of the Eighth International Diatom Symposium. O. Koeltz, Koenigstein, 67-80.

Hasle, G.R., Syvertsen, E.E., Steidinger, K.A., Tangen, K., Tomas, C.R., 1996. Identifying marine diatoms and dinoflagellates.

Academic Press, 598pp. https://doi.org/10.1016/b978-012693015-3/50006-1

Jordan, R.W., Ligowski, L., Nöthig, E.M., Priddle, J., 1991. The diatom genus Proboscia in Antarctic waters. Diatom Research,

1, 63-78. https://doi.org/10.1080/0269249x.1991.9705148 Jordan, R.W., Priddle, J., 1991. Fossil members of the diatom genus Proboscia. Diatom Research, 6(1), 55-61. https://doi.org/10.1080/0269249X.1991.9705147

Jordan, R.W., Saito, M., 1999. The genus Proboscia from the Thalassiosira yabei zone (middle-late Miocene) sediments of Hokkaido, Japan. In: Mayama, S., Idei, M., Koizumi, I. (eds.). Proceedings of the Fourteenth International Diatom Symposium. Tokyo (Japan), September 2-8, 1996. Koeltz Scientific Books, Koenigstein, 565-580

Jordan, R.W., Ito, R., 2002. Observations on Proboscia species from late Cretaceous sediments, and their possible evolution from Kreagra. In: John, J. (ed.). Proceedings of the 15th International Diatom Symposium. Perth (Australia), 28 September -2 October, 1998, A.R.G. Gantner Verlag K.G., 313-330.

Jordan, R.W., Ligowski, I.R., 2004. New observations on Proboscia auxospores and validation of the family Probosciaceae fam. nov. Vie et milieu, 54(2-3), 91-103.

Jouse, A.P., 1971. Diatoms in Pleistocene sediments from the northern Pacific Ocean. In: Funnell, B., Riedel, R. (eds.). The

micropaleontology of oceans. Cambridge University Press, 407-421.

Katsuki, K., Takahashi, K., 2005. Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary. DeepSea Research Part II: Topical Studies in Oceanography, 52(16-

, 2110-2130. https://doi.org/10.1016/j.dsr2.2005.07.001

Koç, N., Scherer, R.P., 1996. Neogene diatom biostratigraphy of the Iceland Sea Site 907. In: Thiede, J., Mclntyhre, A.M., Firth, J.V., Johnson, G.L., Ruddiman, W.F. (eds.). Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, Texas A&M University, College Station, 151, 61-74. https://doi.org/10.2973/odp.proc.sr.151.108.1996

Koç, N., Labeyrie, L., Manthé, S., Flower, B.P., Hodell, D.A., Aksu, A., 2001. The last occurrence of Proboscia curvirostris in the North Atlantic marine isotope stages 9-8. Marine Micropaleontology, 41(1), 9-23. https://doi.org/10.1016/S0377-8398(00)00054-2

Koizumi, I., 1973. The late Cenozoic diatoms of Sites 183–193, Leg 19 Deep Sea Drilling Project. In: Creager, J.S., Scholl, D.W., P.R. (eds.). Initial Reports of the Deep Sea Drilling Project, 19(30), 805-855. https://doi.org/10.2973/dsdp.proc.19.130.1973

Koizumi, I., Tanimura, Y., 1985. Neogene latitude biostratigraphy of the middle latitude western North Pacific, Deep Sea Drilling Project Leg 86. Initial Reports of the Deep Sea Drilling Project, 86, 269-300. https://doi.org/10.2973/dsdp.proc.86.109.1985

Koizumi, I., Sato, M., Matoba, Y., 2009. Neogene diatoms from the Oga Peninsula, North-East Japan and ODP drilling cores in the Japan Sea. Palaeogeography, Palaeoclimatology Palaeoecology, 272, 85-98. https://doi.org/10.1016/j.palaeo.2008.11.007

Koizumi, I., 2010. Revised diatom biostratigraphy of DSDP Leg 19 drill cores and dredged samples from the subarctic Pacific and Bering Sea. JAMSTEC Report of Research and Development, 10, 1-23. https://doi.org/10.5918/jamstecr.10.1 Loseva, E., 1990. Are Both Rhizosolenia curvirostris Jouse and R. barboi Brun found in Pleistocene Sediments of Northeastern Europe? 11th International Diatom Symposium, 55-61.

Mann, D.G., 1999. The species concept in diatoms. Phycologia, 38(6), 437-495. https://doi.org/10.2216/i0031-8884-38-6-437.1

Onodera, J., Takahashi, K., Nagatomo, R., 2016. Diatoms, silicoflagellates, and ebridians at Site U1341 on the western slope of Bowers Ridge, IODP Expedition 323. Deep-Sea Research Part II: Topical Studies in Oceanography, 125, 8-17. https://doi.org/10.1016/j.dsr2.2013.03.025

Sancetta, C., Silvestri, S., 1986. Pliocene-Pleistocene evolution of the North Pacific Ocean-Atmosphere system, interpreted

from fossil diatoms. Paleoceanography, 1(2), 163-180. https://doi.org/10.1029/PA001i002p00163

Schrader, H.J., 1973. Cenozoic diatoms from the North-East Pacific, Leg 18. Initial Reports of the Deep Sea Drilling Project, 18, 673-797. https://doi.org/10.2973/dsdp.proc.18.117.1973

Stabeno, P.J., Schumacher, J.D., Ohtani, K., 1999. The physical oceanography of the Bering Sea. In: Loughlin, T.R., Ohtani, K.

(eds.). Dynamics of the Bering Sea: A Summary of Physical, Chemical, and Biological Characteristics, and a Synopsis of Research on the Bering Sea, North Pacific Marine Science Organization (PICES), University of Alaska Sea Grant, AKSG-99-03, Fairbanks, Alaska, USA, 1-28

Stroynowski, Z., Ravelo, A.C., Andreasen, D., 2015. A Pliocene to recent history of the Bering Sea at Site U1340A, IODP Expedition 323. Paleoceanography, 30(12), 1641-1656. https://doi.org/10.1002/2015pa002866

Stroynowski, Z., Abrantes, F., Bruno, E., 2017. The response of the Bering Sea Gateway during the Mid-Pleistocene Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 974-985. https://doi.org/10.1016/j.palaeo.2017.08.023

Takahashi, K., Jordan, R., Priddle, J., 1994. The diatom genus - in Subarctic Waters. Diatom Research, 9(2), 411-428. https://

doi.org/10.1080/0269249X.1994.9705317

Takahashi, K., 2005. The Bering Sea and paleoceanography. DeepSea Research Part II: Topical Studies in Oceanography, 52(16- 18), 2080-2091. https://doi.org/10.1016/j.dsr2.2005.08.003

Takahashi, K., Ravelo, A.C., Zarikian, C.A., 2011. IODP Expedition 323 - Pliocene and Pleistocene paleoceanographic changes

in the Bering Sea. Scientific Drilling, 11, 4-13. https://doi.org/10.2204/iodp.sd.11.01.2011

Teraishi, A., Suto, I., Onodera, J., Takahashi, K., 2016. Diatom, silicoflagellate and ebridian biostratigraphy and paleoceanography in IODP 323 Hole U1343E at the Bering slope site. Deep-Sea Research Part II: Topical Studies in Oceanography, 125, 18-28. https://doi.org/10.1016/j.dsr2.2013.03.026

Tréguer, P.J., De La Rocha, C.L., 2013. The world ocean silica cycle. Annual Review of Marine Science, 5(1), 477-501. https://doi.org/10.1146/annurev-marine-121211-172346

Tsukazaki, C., Ishii, K.I., Saito, R., Matsuno, K., Yamaguchi, A., Imai, I., 2013. Distribution of viable diatom resting stage cells in bottom sediments of the eastern Bering Sea shelf. Deep-Sea Research Part II: Topical Studies in Oceanography, 94, 22-30. https://doi.org/10.1016/j.dsr2.2013.03.020

Yanagisawa, Y., Akiba, F., 1998. Refined Neogene diatom biostratigraphy for the North-West Pacific around Japan, with an introduction of code numbers for selected diatom biohorizons. Journal of the Geological Society of Japan, 24(6), 395-414. https://doi.org/10.5575/geosoc.104.395

Downloads

Published

2019-10-21

Issue

Section

Articles