Carbon and oxygen stable isotope record of upper Kimmeridgian shallow-marine ramp carbonates (Iberian Basin, NE Spain): the imprint of different burial and tectonic histories


  • Cristina Sequero University of Zaragoza (Spain), Department of Earth Sciences
  • Giovanna Della Porta Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano (Italy)
  • Beatriz Bádenas University of Zaragoza (Spain), Department of Earth Sciences
  • Marcos Aurell University of Zaragoza (Spain), Department of Earth Sciences



Carbonate ramp facies, Carbon and oxygen isotopes, Diagenetic resetting, Post-depositional history, Tectonic uplift


Bulk carbon and oxygen stable isotopes of ancient shallow-marine carbonates can record the effects of multiple palaeoenvironmental factors, but also the imprint of several post-depositional processes, which may alter the original marine isotopic composition. In this study, carbon and oxygen stable isotope analyses were performed on bulk carbonate, bivalve calcitic-shell (Trichites) and calcite vein samples from two stratigraphic sections (Tosos and Fuendetodos, present-day distance 15km), representing proximal inner- and distal mid-ramp environments, respectively, of the uppermost Kimmeridgian ramp facies deposited in the northern Iberian Basin (NE Spain). These successions underwent different diagenetic pathways that altered the primary marine isotopic composition in each section in different ways. Different burial histories, tectonic uplift and a variable exposure to meteoric diagenesis from the end of the Kimmeridgian to the Cenozoic (following Alpine tectonic uplift) are reflected in the different alteration patterns of the carbon and oxygen stable isotope signatures. A significant deviation to lower values in both δ13O and δ18O is recorded in those carbonates mostly exposed to meteoric diagenesis (distal mid-ramp Fuendetodos section), because of post-depositional tectonic uplift (telogenesis). On the other hand, the deposits mainly affected by burial diagenesis (proximal inner-ramp Tosos section) only record low δ18O with respect to expected values for pristine Kimmeridgian marine carbonates. The different burial and tectonic uplift histories of these deposits in each sector, due to their different tectonic evolution in this part of the basin, resulted in a variable degree of diagenetic resetting. However, in spite of the different diagenetic resetting reported of the carbon and oxygen stable isotope signatures in each section, these carbonates show similar cement types in terms
of fabrics and cathodoluminescence properties. The diagenetic resetting reported for these carbonates prevents the use of the δ13O and δ18O records for addressing palaeoenvironmental interpretations, but instead highlights useful features regarding the variable diagenetic overprint of the studied shallow-marine carbonate successions concerning their specific post-depositional history.


Allan, J.R., Matthews, R.K., 1982. Isotope signatures associated with early meteoric diagenesis. Sedimentology, 29, 797-817.

Al-Mojel, A., Dera, G., Razin, P., Le Nindre, Y-M., 2018. Carbon and oxygen isotope stratigraphy of Jurassic platform carbonates from Saudi Arabia: Implications for diagenesis, correlations and global paleoenvironmental changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 511, 388-402.

Anderson, T.F., Arthur, M.A., 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In: Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J., Land, L.S. (eds.). Stable Isotopes in Sedimentary Geology. Tulsa, Society of Economic Paleontologists and Mineralogists (SEPM), Short Course 10, 1-151.

Aurell, M., Meléndez, A., 1986. Sedimentología de la Formación Calizas con oncolitos de Higueruelas (Malm) en la región de Muel-Belchite (Provincia de Zaragoza). Acta Geológica Hispánica, 21-22, 307-312.

Aurell, M., 1990. El Jurásico Superior en la Cordillera Ibérica Central (provincias de Zaragoza y Teruel). Análisis de cuenca. Ph.D. Thesis. Zaragoza, University of Zaragoza, 534pp.

Aurell, M., Robles, S., Bádenas, B., Rosales, I., Quesada, S., Meléndez, G., García-Ramos, J.C., 2003. Transgressiveregressive cycles and Jurassic palaeogeography of northeast Iberia. Sedimentary Geology, 162, 239-271.

Aurell, M., Bádenas, B., Ipas, J., Ramajo, J., 2010. Sedimentary evolution of an Upper Jurassic epeiric carbonate ramp, Iberian Basin, NE Spain. In: Van Buchem, F.S.P., Gerdes, K.D., Esteban, M. (eds). Mesozoic and Cenozoic Carbonate Systems

of the Mediterranean and the Middle East: Stratigraphic and Diagenetic Reference Models. Geological Society, London, Special Publications, 329, 89-111.

Aurell, M., Ipas, J., Bádenas, B., Muñoz, A., 2012. Distribución de facies con corales y estromatopóridos en el dominio interno de una plataforma carbonatada (Titónico, Cordillera Ibérica). Geogaceta, 51, 67-70.

Aurell, M., Bádenas, B., Canudo, J.I., Castanera, D., García-Penas, A., Gasca, J.M., Martín-Closas, C., Moliner, L., MorenoAzanza, M., Rosales, I., Santas, L., Sequero, C., Val, J., 2019. Kimmeridgian-Berriasian stratigraphy and sedimentary

evolution of the central Iberian Rift System (NE Spain). Cretaceous Research, 103, 104153.

Bádenas, B., Aurell, M., 2001. Kimmeridgian palaeogeography and basin evolution of northeastern Iberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 168, 291-310.

Bádenas, B., Aurell, M., 2003. Análisis comparado y controles en la sedimentación de dos arrecifes de la zona media de una

rampa carbonatada del Jurásico Superior de la Cordillera Ibérica. Revista de la Sociedad Geológica de España, 16(3-4), 151-166.

Bahamonde, J.R., Della Porta, G., Merino-Tomé, O.A., 2017. Lateral variability of shallow-water facies and high-frequency cycles in foreland basin carbonate platforms (Pennsylvanian, NW Spain). Facies, 63(2), 6.

Banner, J.L., Hanson, G.N., 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54(11), 3123-3137.

Barnaby, R.J., Rimstidt, J.D., 1989. Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites. Geological Society of America Bulletin, 101, 795-804.

Bartolini, A., Pittet, B., Mattioli, E., Hunziker, J.C., 2003. Shallowplatform palaeoenvironmental conditions recorded in deepshelf sediments: C and O stable isotopes in Upper Jurassic sections of southern Germany (Oxfordian–Kimmeridgian).

Sedimentary Geology, 160, 107-130.

Brand, U., Veizer, J., 1980. Chemical diagenesis of a multicomponent carbonate system -1: trace elements. Journal of Sedimentary Petrology, 50, 1219-1236.

Brand, U., Veizer, J., 1981. Chemical diagenesis of a multicomponent carbonate system -2: Stable isotopes. Journal of Sedimentary Petrology, 51, 987-997.

Brand, U., Posenato, R., Came, R., Affek, H., Angiolini, L., Azmy, K., Farabegoli, E., 2012. The end-Permian mass extinction: a

rapid volcanic CO2 and CH4-climatic catastrophe. Chemical Geology, 322, 121-144.

Carpenter, A.B., Oglesby, T.W., 1976. A model for the formation of luminescently zoned calcite cements and its implications.

Geological Society of America Abstracts with Programs, 8, 469-470.

Carpenter, S.J., Lohmann, K.C., 1989. δ18O and δ13C variations in Late Devonian marine cements from the Golden Spike and Nevis reefs, Alberta, Canada. Journal of Sedimentary Petrology, 59, 792-814.

Carpenter, S.J., Lohmann, K.C., 1997. Carbon isotope ratios of Phanerozoic marine cements: re-evaluating the global carbon

and sulfur systems. Geochimica et Cosmochimica Acta, 61, 4831-4846.

Castro, J.M., de Gea, G.A., Quijano, M.L., Aguado, R., Froehner, S., Naafs, B.D.A., Pancost., R.D., 2019. Complex and protracted environmental and ecological perturbations during OAE 1a – Evidence from an expanded pelagic section from south Spain (Western Tethys). Global and Planetary Change, 183, 103030.

Chung, H.M., Rooney, M.A., Toon, M.B., Claypool, G.E., 1992. Carbon isotope composition of marine crude oils. The American Association of Petroleum Geologists Bulletin, 76(7), 1000-1007.

Coimbra, R., Immenhauser, A., Olóriz, F., 2014. Spatial geochemistry of Upper Jurassic marine carbonates (Iberian subplate). Earth-Science Reviews, 139, 1-32.

Colombié, C., Lécuyer, C., Strasser, A., 2011. Carbon- and oxygen-isotope records of palaeoenvironmental and carbonate production changes in shallow-marine carbonates (Kimmeridgian, Swiss Jura). Geological Magazine, 148(1), 133-153.

McConnaughey, T.A., 1989a. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta, 53, 151-162.

McConnaughey, T.A., 1989b. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochimica et Cosmochimica Acta, 53, 163-171.

Cortés Gracia, A.L., Casas Sainz, A.M., 1996. Deformación alpina de zócalo y cobertera en el borde norte de la Cordillera Ibérica (Cubeta de Azuara-Sierra de Herrera). Revista de la Sociedad Geológica de España, 9(1-2), 51-66.

Cortés, A.L., Liesa, C.L., Soria, A.R., Meléndez, A., 1999. Role of extensional structures on the location of folds and thrusts during tectonic inversion (northern Iberian Chain, Spain). Geodinamica Acta, 12(2), 113-132.

Dercourt, J., Ricou, L., Vrielynck, B., 1993. Atlas: Tethys palaeoenvironmental Maps. Paris, Gauthier-Villars, 14pp.

Derry, L.A., 2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth and Planetary Science Letters, 294, 152-162.

Eltom, H.A., Gonzalez, L.A., Hasiotis, S.T., Rankey, E.C., Cantrell, D.L., 2018. Paleogeographic and paleo-oceanographic influences on carbon isotope signatures: Implications for global and regional correlation, Middle-Upper Jurassic of Saudi Arabia. Sedimentary Geology, 364, 89-102.

Fike, D.A., Grotzinger, J.P., Pratt, L.M., Summons, R.E., 2006. Oxidation of the Ediacaran Ocean. Nature, 444, 744-747.

Flügel, E., 2004. Microfacies of Carbonate Rocks. Analysis, Interpretation and Application. Germany,Springer-Verlag, 976pp.

Frank, J.R., Carpenter, A.B., Oglesby, T.W., 1982. Cathodoluminescence and composition of calcite cement in the Taum Sauk Limestone (Upper Cambrian), southeast Missouri. Journal of Sedimentary Petrology, 52, 631-638.

Given, R.K., Lohmann, K.C., 1985. Derivation of the original isotopic composition of Permian marine carbonates. Journal of Sedimentary Petrology, 55, 430-439.

Glumac, B., Walker, K., 1998. A Late Cambrian positive carbonisotope excursion in the southern Appalachians: relation to biostratigraphy, sequence stratigraphy, environments of deposition, and diagenesis. Journal of Sedimentary Research,

(6), 1212-1222.

Grötsch, H.J., Billing, I., Vahrenkamp, V., 1998. Carbon-isotope stratigraphy in shallow-water carbonates: implications for

Cretaceous black-shale deposition. Sedimentology, 45, 623-634.

Grotzinger, J.P., Fike, D.A., Fischer, W.W., 2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nature Geoscience, 4, 285-292.

Guimerà, J., Álvaro, M., 1990. Structure et évolution de la compression alpine dans la Chaîne Ibérique et la Chaîne côtière catalane (Espagne). Bulletin de la Societé géologique de France, 6(2), 339-348.

Hiatt, E.E., Pufahl, P.K., 2014. Cathodoluminescence petrography of carbonate rocks: a review of applications for understanding diagenesis, reservoir quality, and pore system evolution. In: Coulson, I.M. (ed.). Cathodoluminescence and its application to geoscience. Mineralogical Association of Canada Short Course, 45, 75-96.

Huck, S., Wohlwend, S., Coimbra, R., Christ, N., Weissert, H., 2017. Disentangling shallow-water bulk carbonate carbon isotope archives with evidence for multi-stage diagenesis: An in-depth component-specific petrographic and geochemical

study from Oman (mid-Cretaceous). The Depositional Record, 3, 233-257.

Hudson, J.D., 1977. Stable isotopes and limestone lithification. Journal of the Geological Society, 133(6), 637-660.

Immenhauser, A., Kenter, J.A.M., Ganssen, G., Bahamonde, J.R., Van Vliet, A., Saher, M.H., 2002. Origin and significance of isotope shifts in Pennsylvanian carbonates (Asturias, NW Spain). Journal of Sedimentary Research, 72(1), 82-94.

Immenhauser, A., Della Porta, G., Kenter, J.A., Bahamonde, J.R., 2003. An alternative model for positive shifts in shallow-marine carbonate δ13C and δ18O. Sedimentology, 50(5), 953-959.

Ipas, J., Aurell, M., Bádenas, B., 2004. Ambientes sedimentarios y secuencias en la Fm. Higueruelas (Jurásico Superior) en la

Cordillera Ibérica Septentrional. Geogaceta, 35, 7-10.

Jenkyns, H.C., Clayton, C.J., 1986. Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology, 44, 687-706.

Jenkyns, H.C., Jones, C.E., Gröcke, D.R., Hesselbo, S.P., Parkinson, D.N., 2002. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. London, Journal of the Geological Society, 159, 351-378.

Joachimski, M.M., 1994. Subaerial exposure and deposition of shallowing upward sequences: evidence from stable isotopes of Purbeckian peritidal carbonates (basal Cretaceous), Swiss and French Jura Mountains. Sedimentology, 41, 805-824.

van der Kooij, B., Immenhauser, A., Csoma, A., Bahamonde, J., Steuber, T., 2009. Spatial geochemistry of a Carboniferous platform-margin-to-basin transect: balancing environmental and diagenetic factors. Sedimentary Geology, 219, 136-150.

Lavastre, V., Ader, M., Buschaert, S., Petit, E., Javoy, M., 2011. Water circulation control on carbonate- δ18O records in a low

permeability clay formation and surrounding limestones: the Upper Dogger–Oxfordian sequence from the eastern Paris

basin, France. Applied Geochemistry, 26(5), 818-827.

Lavoie, D., Bourque, P.A., 1993. Marine burial and meteoric diagenesis of early Silurian carbonate ramps, Quebec Appalachians, Canada. Journal of Sedimentary Petrology, 63(2), 233-247.

Liesa, C.L., Soria, A.R., Casas, A., Aurell, M., Meléndez, N., Bádenas, B., Fregenal-Martínez, M., Navarrete, R., Peropadre, C., Rodríguez-López, J.P., 2019. The South Iberian, CentralIberian and Maestrazgo basins. In: Quesada, C., Oliveira, J.T. (eds.). The Geology of Iberia: A Geodynamic Approach Vol. 3. Springer Nature Switzerland AG, Alpine Cycle, 214-228.

Lohmann, K.C., 1988. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In: James, N.P., Choquette, P.W. (eds.). Paleokarst. Berlin, Springer-Verlag, 50-80.

Machel, H.G., 1985. Cathodoluminiscence in calcite and dolomite and its chemical interpretation. Geoscience Canada, 12(4),


Madden, R., Wilson, M.E., 2013. Diagenesis of a SE Asian Cenozoic carbonate platform margin and its adjacent basinal deposits. Sedimentary Geology, 286-287, 20-38.

Magaritz, M., 1983. Carbon and oxygen isotope composition of recent and ancient coated grains. In: Peryt, T.M. (ed.). Coated Grains. Berlin, Springer-Verlag, 27-37.

Marshall, J.D., 1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological Magazine, 129, 143-160.

Metzger, J.G., Fike, D.A., 2013. Techniques for assessing spatial heterogeneity of carbonate δ13C values: Implications for craton-wide isotope gradients. Sedimentology, 60, 1405-1431.

Moore, C.H., 1989. Carbonate Diagenesis and Porosity. Developments in Sedimentology Vol. 46. Amsterdam, Elsevier, 337pp.

Moore, C.H., 2001. Carbonate Reservoirs: Porosity evolution and diagenesis in a sequence stratigraphic framework. Amsterdam, Elsevier, 460pp.

Morse, J.W., Mackenzie, F.T., 1990. Geochemistry of sedimentary carbonates: Developments in Sedimentology, 48, 707pp.

Nelson, C.S., Smith, A.M., 1996. Stable oxygen and carbon isotope compositional fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate sediments and limestones: a synthesis and review. New Zealand Journal of Geology and Geophysics, 39, 93-107.

Nunn, E.V., Price, G.D., 2010. Late Jurassic (Kimmeridgian-Tithonian) stable isotopes (δ18O, δ13C) and Mg/Ca ratios: New paleoclimate data from Helmsdale, northeast Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology, 292, 325-335.

Oehlert, A.M., Swart, P.K., 2019. Rolling window regression of δ13C and δ18O values in carbonate sediments: Implications for source and diagenesis. The Depositional Record, 5(3), 613-630.

Oglesby, T.W., 1976. A model for the distribution of manganese, iron and magnesium in authigenic calcite and dolomite cements in the Upper Smackover Formation in eastern Mississippi. PhD Thesis. University of Missouri, 122pp.

O’Neil, J.R., 1977. Stable isotopes in mineralogy. Physics and Chemistry of Minerals, 2, 105-123.

O’Neil, J.R., 1987. Preservation of H, C, and O isotopic ratios in the low temperature environment. In: Kyser, T.K. (ed.). Stable Isotope Geochemistry of Low Temperature Fluids. Mineralogical Association of Canada, Saskatoon, 85-128.

Patterson, W.P., Walter, L.M., 1994. Depletion of 13C in seawater ƩCO2 on modern carbonate platforms: Significance for the

carbon isotopic record of carbonates. Geology, 22, 885-888.

Peckmann, J., Thiel, V., 2004. Carbon cycling at ancient methaneseeps. Chemical Geology, 205(3-4), 443-467.

Pérez, A., Azanza, B., Cuenca, G., Pardo, G., Villena, J., 1985. Nuevos datos estratigráficos y paleontológicos sobre el Terciario del borde meridional de la depresión del Ebro (provincia de Zaragoza). Estudios Geológicos, 41, 405-411.

Pérez, A., 1989. Estratigrafia y sedimentologia del Terciario del borde meridional de la Depresión del Ebro (sector riojanoaragonés) y cubetas de Muniesa y Montalban. PhD Thesis. Zaragoza, Universidad de Zaragoza, 525pp.

Plunkett, J.M., 1997. Early Diagenesis of Shallow Platform Carbonates in the Oxfordian of the Swiss Jura Mountains. PhD Thesis. Fribourg, Université de Fribourg, unpublished, 166pp.

Riboulleau, A., Baudin, F., Daux, V., Hantzpergue, P., Renard, M., Zakharov, V., 1998. Evolution de la paléotempératures des

eaux de la plateforme russe au cours du Jurassique supérieur. Comptes Rendus de l’Académie des Sciences de Paris, Sciences de la Terre et des Planètes, 326, 239-246.

Richter, D.K., Götte, T., Götze, J., Neuser, R.D., 2003. Progress in application of cathodoluminescence (CL) in sedimentary geology. Mineral Petrology, 79(3-4), 127-166.

Rosales, I., Quesada., S., Robles, S., 2001. Primary and diagenetic isotopic signals in fossils and hemipelagic carbonates: the Lower Jurassic of northern Spain. Sedimentology, 48, 1149-1169.

Salas, R., Guimerà, J., 1996. Rasgos estructurales principales de la cuenca cretácica inferior del Maestrazgo (Cordillera Ibérica oriental). Geogaceta, 20(7), 1704-1706.

Savard, M.M., Veizer, J., Hinton, R.H., 1995. Cathodoluminescence at low Fe and Mn concentrations: A SIMS study of zones in natural calcites. Journal of Sedimentary Research, 65(1a), 208-213.

Schobben, M., Ullmann, C.V., Leda, L., Korn, D., Struck, U., Reimold, W.U., Ghaderi, A., Algeo, T.J., Korte, C., 2015. Discerning primary versus diagenetic signals in carbonate carbon and oxygen isotope records: An example from the Permian–Triassic boundary of Iran. Chemical Geology, 422, 94-107.

Sequero, C., Bádenas, B., Aurell, M., 2018. Facies mosaic in the inner areas of a shallow carbonate ramp (Upper Jurassic,

Higueruelas Fm, NE Spain). Facies, 64(2), 1-23.

Sequero, C., Aurell, M., Bádenas, B., 2019. Sedimentary evolution of a shallow carbonate ramp (Kimmeridgian, NE Spain):

Unravelling controlling factors for facies heterogeneities at reservoir scale. Marine and Petroleum Geology, 109, 145-174.

Sequero, C., Aurell, M., Bádenas, B., 2020. Oncoid distribution in the shallow domains of a Kimmeridgian carbonate ramp (Late Jurassic, NE Spain). Sedimentary Geology, 398, 105585.

Sharp, Z., 2007. Principles of stable isotope geochemistry. Pearson/Prentice Hall, University of Michigan, 344pp.

Soria, A.R., Martín-Closas, C., Meléndez, A., Meléndez, N., Aurell, M., 1995. Estratigrafía del Cretácico inferior del sector central de la Cordillera Ibérica. Estudios Geológicos, 51, 141-152.

Strasser, A., 2015. Hiatuses and condensation: an estimation of time lost on a shallow carbonate platform. The Depositional

Record, 1(2), 91-117.

Swart, P.K., 2015. The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology, 62(5), 1233-1304.

Swart, P.K., Oehlert, A.M., 2018. Revised interpretations of stable C and O patterns in carbonate rocks resulting from meteoric diagenesis. Sedimentary Geology, 364, 14-23.

Travé, A., Nadal, J., Playà, E., Salas, R., Martín-Martín, J.D., GomezRivas, E., 2019. Fracture-related dolomitization affecting Late Jurassic-Lowermost Cretaceous syn-rift deposits (Maestrat Basin, Southern Iberian Chain, Eastern Spain). In: Doronzo,

D.M.., Schingaro, E., Amstrong-Altrin, J.S., Zoheir, B. (eds.). Petrogenesis and Exploration of the Earth’s Interior. Advances

in Science, Technology and Innovation, 163-165.

Tucker, M.E., 1993. Carbonate diagenesis and sequence stratigraphy. Sedimentology Reviews, 1, 51-72.

Veizer, J., Bruckschen, P., Pawellek, F., Diener, A., Podlaha, O.G., Carden, G.A.F., Jasper, T., Korte, C., Strauss, H., Azmy, K., Ala,

D., 1997. Oxygen isotope evolution of Phanerozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 159-172.

Vincent, B., Emmanuel, L., Loreau, J.P., 2004. Significance of the isotopic signal (δ18O, δ13C) of neritic carbonates: diagenetic component and original component (Upper Jurassic of the East of the Paris Basin, France). Comptes Rendus Geoscience, 336(1), 29-39.

Vogel, J.C., 1993. Variability of carbon isotope fractionation during photosynthesis. In: Ehleringer, J.R., Hall, A.E., Farquhar, G.D. (eds.). Stable Isotopes and Plant Carbon–Water Relations. San Diego (California), Academic Press, 29-38.

Wierzbowski, H., 2004. Carbon and oxygen isotope composition of Oxfordian–Early Kimmeridgian belemnite rostra: palaeoenvironmental implications for Late Jurassic seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 203, 153-168.

Zuo, F., Heimhofer, U., Huck, S., Bodin, S., Erbacher, J., Bai, H., 2018. Coupled δ13C and 87Sr/86Sr chemostratigraphy of Kimmeridgian shoal-water deposits: A new composite record from the Lower Saxony Basin, Germany. Sedimentary Geology, 376, 18-31.







Most read articles by the same author(s)