Controls on carbonate deposition and microbialite formation in distal alluvial systems (Campanian, Montalbán subbasin, NE Spain)

Microbialite formation in distal alluvial systems

Authors

  • Diego Torromé Sanz Universidad de Zaragoza https://orcid.org/0000-0002-5101-5777
  • Andrea Martín-Pérez Research Centre of the Slovenian Academy of Sciences and Arts
  • Adrijan Košir Research Centre of the Slovenian Academy of Sciences and Arts
  • Marcos Aurell Universidad de Zaragoza

DOI:

https://doi.org/10.1344/GeologicaActa2024.22.13

Keywords:

Microbialites, Oncoids, Cretaceous, Iberia, Alluvial

Abstract

The middle-upper Campanian Allueva Formation was deposited in the compressional intramountain Montalbán subbasin (central Iberian Ranges, NE Spain). This i.e. formation consists of alluvial terrigenous deposits, with local dominance of carbonates and microbialites, which are the main focus of this study. Three sfacies associations are differentiated: i) bioclastic facies association including limestone levels with accumulation of gastropods and charophytes, along with polygenetic carbonate breccias; ii) microbialite facies association dominated by irregular limestone beds rich in oncoids; iii) terrigenous facies association including metric levels of reddish-brown mudstone with intercalations of sandstones and conglomerates. These facies deposited in a low water level and short residence lacustrine-palustrine environments, in the distal areas of an alluvial system. Isotopic data (δ13C and δ18O) fall in the range of freshwater carbonates and support this interpretation. The most common microbialites are oncoids, which have been classified into six types based on their morphology, size, and lamination. Cyclic patterns in the lamination of oncoids have been related to changing wet and dry conditions. Our results suggest that the alluvial setting was mainly fed by meteoric waters, with a sub-humid climate gradually transitioning to more arid conditions.

References

Allen, J.R.L., 1983. Gravel overpassing on humpback bars supplied with mixed sediment: examples from the Lower Old Red Sandstone, southern Britain. Sedimentology, 30(2), 285-294. DOI: https://doi.org/10.1111/j.1365-3091.1983.tb00671.x

Alonso-Zarza, A.M., Calvo, J.P., 2000. Palustrine sedimentation in an episodically subsiding basin: the Miocene of the northern Teruel Graben (Spain). Palaeogeogaphy, Palaeoclimatology, Palaeoecology, 160, 1-21. DOI: https://doi.org/10.1016/S0031-0182(00)00041-9

Alonso-Zarza, A.M., Wright, V.P., 2010. Palustrine carbonates. In: Alonso-Zarza, A.M., Tanner, L.H. (eds.). Carbonates in continental settings. Developments in Sedimentology, 61, 103-131. DOI: https://doi.org/10.1016/S0070-4571(09)06102-0

Andres, M.S., Reid, R.P., 2006. Growth morphologies of modern marine stromatolites: A case study from Highborne Cay, Bahamas. Sedimentary Geology, 185, 319-328. DOI: https://doi.org/10.1016/j.sedgeo.2005.12.020

Andrews, J.E., 2006. Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth-Science Reviews, 75(1-4), 85-104. DOI: https://doi.org/10.1016/j.earscirev.2005.08.002

Andrews, J.E., Brasier, A.T., 2005. Seasonal records of climatic change in annually laminated tufas: Short review and future prospects. Journal of Quaternary Science, 20, 411-421. DOI: https://doi.org/10.1002/jqs.942

Arenas, C., Jones, B., 2017. Temporal and environmental significance of microbial lamination: Insights from Recent fluvial stromatolites in the River Piedra, Spain. Sedimentology, 64, 1597-1629. DOI: https://doi.org/10.1111/sed.12365

Arenas, C., Cabrera, L., Ramos, E., 2007. Sedimentology of tufa facies and continental microbialites from the Palaeogene of Mallorca Island (Spain). Sedimentary Geology, 197, 1-27. DOI: https://doi.org/10.1016/j.sedgeo.2006.08.009

Arenas, C., Piñuela, L., García‐Ramos, J.C., 2015. Climatic and tectonic controls on carbonate deposition in syn‐rift siliciclastic fluvial systems: A case of microbialites and associated facies in the Late Jurassic. Sedimentology, 62(4), 1149-1183. DOI: https://doi.org/10.1111/sed.12182

Arenas-Abad, C., Vázquez-Urbez, M., Pardo-Tirapu, G., Sancho-Marcén, C., 2010. Fluvial and associated carbonate deposits. In: Alonso-Zarza, A.M., Tanner, L.H. (eds). Carbonates in Continental Settings: Facies, Environments and Processes. Developments in Sedimentology, 61, 133-175.

Arp, G., Bissett, A., Brinkmann, N., Cousin, S., deBeer, D., Friedl, T., Mohr, K.I., Neu, T.R., Reimer, A., Shiraishi, F., Stackebrandt, E., Zippel, B., 2010. Tufa-forming biofilms of German karstwater streams: Microorganisms, exopolymers, hydrochemistry and calcification. In: Pedley, M., Rogerson, M. (eds.). Tufas and Speleothems: Unravelling the Microbial and Physical Controls. London, The Geological Society, 336 (Special Publications), 83-118. DOI: https://doi.org/10.1016/S0070-4571(09)06103-2

Astibia, H., López-Martínez, N., Elorza, J., Vicens, E., 2012. Increasing size and abundance of microbialites (oncoids) in connection with the K/T boundary in non-marine environments in the South Central Pyrenees. Geologica Acta, 10(3), 209-226. DOI: https://doi.org/10.1344/105.000001770

Aurell, M., Fregenal-Martínez, M., Bádenas, B., Muñoz-García, M.B., Élez, J., Meléndez, N., De Santisteban, C., 2019. Middle Jurassic-early cretaceous tectonosedimentary evolution of the southwestern Iberian Basin (central Spain): Major palaeogeographical changes in the geotectonic framework of the Western Tethys. Earth Science Reviews, 199, 102983. DOI: https://doi.org/10.1016/j.earscirev.2019.102983

Aurell, M., Torromé, D., Gasca, J.M., Calvín, P., Pérez-Pueyo, M., Parrilla-Bel, J., Medrano-Aguado, E., Martín-Closas, C., Vicente, A., Sierra-Campos, P., Canudo, J.I., 2022. Latest Cretaceous palaeogeographic evolution of northeast Iberia: Insights from the Campanian continental Montalbán subbasin (Spain). Earth-Science Reviews, 104251. DOI: https://doi.org/10.1016/j.earscirev.2022.104251

Awramik, S.M., Buchheim, H.P., 2015. Giant stromatolites of the Eocene Green River Formation (Colorado, USA). Geology, 43(8), 691-694. DOI: https://doi.org/10.1130/G36793.1

Berra, F., Felletti, F., Tessarollo, A., 2019. Oncoids and groundwater calcrete in a continental siliciclastic succession in a fault-controlled basin (Early Permian, Northern Italy). Facies, 65, 1-19. DOI: https://doi.org/10.1007/s10347-019-0580-5

Bosence, D., 2012. Mesozoic, syn-rift, non-marine, microbialites from the Wessex Basin, UK. American Association of Petroleum Geologists (AAPG) Hedberg Conference, Microbial Carbonate Reservoir Characterization, 1-3.

Casanova, J., 1986. Les stromatolites continentaux: Paléoecologie, paléohydrologie, paléo-climatologie. Application au Rift Gregory. PhD Thesis. Marseille, Université Marseille-Luminy, 256pp.

Casanova, J., 1994. Stromatolites from the East African Rift: A synopsis. In: Bertrand-Sarfati, J., Monty, C. (eds.). Phanerozoic Stromatolites II. Dordrecht, Kluwer Academic Publishers, 193-226.

Casas, A.M., Casas, A., Pérez, A., Tena, S., Barrier, L., Gapais, D., Nalpas, T., 2000. Syn-tectonic sedimentation and thrust-and-fold kinematics at the intra-mountain Montalbán Basin (northern Iberian Chain, Spain). Geodinamica Acta, 13, 1-17. DOI: https://doi.org/10.1016/S0985-3111(00)00105-4

Choi, S., Han, S., Kim, N.H., Lee, Y.N., 2018. A comparative study of eggshells of Gekkota with morphological, chemical compositional and crystallographic approaches and its evolutionary implications. PLoS One, 13(6), e0199496. DOI: https://doi.org/10.1371/journal.pone.0199496

Cloud, P.E., 1942. Notes on stromatolites. American Journal of Science, 240, 363-379. DOI: https://doi.org/10.2475/ajs.240.5.363

Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X., Brusatte, S.L., 2015. Island life in the Cretaceous-faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago. ZooKeys, 469, 1-161. DOI: https://doi.org/10.3897/zookeys.469.8439

Deelman, J.C., 1972. On mechanisms causing birdseye structures. Neues Jahrbuch für Geologie und Paläontologie, 10, 582-595.

Drysdale, R., Gillieson, D., 1997. Micro-erosion meter measurements of travertine deposition rates: A case study from louie creek, Northwest Queensland, Australia. Earth Surface Processes and Landforms, 22, 1037-1051. DOI: https://doi.org/10.1002/(SICI)1096-9837(199711)22:11%3C1037::AID-ESP800%3E3.0.CO;2-X

Dunham, R.J., 1962. Classification of carbonate rocks according to depositional textures. American Association of Petroleum Geologists Bulletin, 1, 108-121.

Floquet, M., 1991. La plate-forme Nord-castillane au Crétacé supérieur (Espagne). Arrière-pays ibérique de la marge passive basco-cantabrique. Sédimentation et Vie. PhD Thesis. University of Dijon, 925pp.

Flügel, E., 2004. Microfacies data: fabrics. In: Flügel, E. (ed). Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Berlin, Heidelberg, Springer, 177-242.

Frantz, C.M., Petryshyn, V.A., Marenco, P.J., Tripati, A., Berelson, W.M., Corsetti, F.A., 2014. Dramatic local environmental change during the Early Eocene Climatic Optimum detected using high resolution chemical analyses of Green River Formation stromatolites. Palaeogeography, Palaeoclimatology, Palaeoecology, 405, 1-15. DOI: https://doi.org/10.1016/j.palaeo.2014.04.001

Freeman, T.O.M., Rosell, J., Obrador, A., 1982. Oncolites from lacustrine sediments in the Cretaceous of north‐eastern Spain. Sedimentology, 29(3), 433-436. DOI: https://doi.org/10.1111/j.1365-3091.1982.tb01806.x

Freytet, P., Plaziat, J.C., 1982. Continental carbonate sedimentation and pedogenesis-Late Cretaceous and Early Tertiary of southern France. Contributions to Sedimentology, 12, 1-123.

Freytet, P.,Verrecchia, E.P., 1998. Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology, 45(3), 535-563. DOI: https://doi.org/10.1046/j.1365-3091.1998.00155.x

Freytet, P., Verrecchia, E.P., 1999. Calcitic radial palisadic fabric in freshwater stromatolites: diagenetic and recrystallized feature or physicochemical sinter crust? Sedimentary Geology, 126(1-4), 97-102. DOI: https://doi.org/10.1016/S0037-0738(99)00034-2

García, A., Chivas, A.R., 2006. Diversity and ecology of extant and Quaternary Australian charophytes. Cryptogamie Algologie, 27, 323-340.

García, A., Mas, R., Segura, M., Carenas, B., García-Hidalgo, J.F., Gil, J., Alonso, A., Aurell, M., Bádenas, B., Benito, M.I., Meléndez, A., Salas, R., 2004. Segunda fase de post-rifting: Cretácico Superior. In: Vera, J.A. (ed.). Geología de España. Madrid, Sociedad Geológica de España and Instituto Geológico y Minero de España, 510-522.

Gebelein, C.D., 1976. Open marine subtidal and intertidal stromatolites (Florida, the Bahamas and Bermuda). In: Walter, M.R. (ed.). Stromatolites. Amsterdam, Elsevier, 381-388.

Ginsburg, R.N., 1960. Ancient analogues of recent stromatolites. 21st International Geological Congress, 22, 26-35.

Gónzalez, A., Pérez, A., 2018. El Terciario del sector turolense de la cuenca del Ebro: una crónica de la estructuración alpina de la Cordillera Ibérica. In: Alcalá, L., Calvo, P., Simón, J.L. (eds.). Geología de Teruel. Alcañiz, Instituto de Estudios Turolenses de la Diputación de Teruel, 83-98.

Gradziński, M., 2010. Factors controlling growth of modern tufa: results of a field experiment. In: Pedley, M., Rogerson, M. (eds.). Tufas and Speleothems: Unravelling the Microbial and Physical Controls. London, The Geological Society, 336 (Special Publications), 143-191. DOI: https://doi.org/10.1144/SP336.8

Grotzinger, J.P., Knoll, A.H., 1999. Stromatolites in Precambrian carbonates: Evolutionary Mileposts or Environmental Dipsticks? Annual Review of Earth and Planetary Science, 27, 313-358. DOI: https://doi.org/10.1146/annurev.earth.27.1.313

Haq, B.U., 2014. Cretaceous eustasy revisited. Global and Planetary Change, 113, 44-58. DOI: https://doi.org/10.1016/j.gloplacha.2013.12.007

Hiatt, E.E., Pufahl, P.K., 2014, Cathodoluminescence petrography of carbonate rocks: application to understanding diagenesis, reservoir quality, and pore system evolution. In: Coulson, I. (ed.). Cathodoluminescence and its application to geoscience: Mineralogical Association of Canada. Short Course Series, 45, 75-96.

Hladil, J., Ruzicka, M., Koptikova, L., 2006. Stromatactis cavities in sediments and the role of coarse-grained accessories. Bulletin of Geosciences, 81(2), 123-146.

Hladil, J., Ruzicka, M., Geurts, B.J., Clercx, H., Uijttewaal, W., 2007. Stromatactic patterns formation in geological sediments: field observations versus experiments. Ercoftac Series, 11, 85.

Hoefs, J., 2009. Stable Isotope Geochemistry. Berlin, Springer-Verlag, 285pp.

Hofmann, H.J., 1973. Stromatolites: Characteristics and Utility. Earth-Science Reviews, 9, 339-373. DOI: https://doi.org/10.1016/0012-8252(73)90002-0

Huerta, P., Armenteros, I., Silva, P.G., 2011. Large-scale architecture in non-marine basins: the response to the interplay between accommodation space and sediment supply. Sedimentology, 58(7), 1716-1736. DOI: https://doi.org/10.1111/j.1365-3091.2011.01231.x

Ikejiri, T., Lu, Y., Zhang, B., 2020. Two-step extinction of Late Cretaceous marine vertebrates in northern Gulf of Mexico prolonged biodiversity loss prior to the Chicxulub impact. Scientific Reports, 10(1), 4169. DOI: https://doi.org/10.1038/s41598-020-61089-w

Isasmendi, E., Torices, A., Canudo, J.I., Currie, P.J., Pereda‐Suberbiola, X., 2022. Upper Cretaceous European theropod palaeobiodiversity, palaeobiogeography and the intra‐Maastrichtian faunal turnover: new contributions from the Iberian fossil site of Laño. Papers in Palaeontology, 8(1), e1419. DOI: https://doi.org/10.1002/spp2.1419

Jahnert, R.J., Collins, L.B., 2011. Significance of subtidal microbial deposits in Shark Bay, Australia. Marine Geology, 286, 106-111. DOI: https://doi.org/10.1016/j.margeo.2011.05.006

Jahnert, R.J., Collins, L.B., 2013. Controls on microbial activity and tidal flat evolution in Shark Bay, Western Australia. Sedimentology, 60, 1071-1099. DOI: https://doi.org/10.1111/sed.12023

Kano, A., Hagiwara, R., Kawai, T., Hori, M., Matsuoka, J., 2007. Climatic conditions and hydrological change recorded in a high-resolution stable-isotope profile of a recent laminated tufa on a subtropical island, southern Japan. Journal of Sedimentary Research, 77, 59-67. DOI: https://doi.org/10.2110/jsr.2007.006

Kennard, J.M., Burne, R.V., 1989. Stromatolite Newsletter Number 14. Camberra, Bureau of Mineral Resources, Geology and Geophysics, 179pp.

Le Loeuff, J., Buffetaut, E., Martin, M., 1994. The last stages of dinosaur faunal history in Europe: a succession of Maastrichtian dinosaur assemblages from the Corbières (southern France). Geological Magazine, 131(5), 625-630. DOI: https://doi.org/10.1017/S0016756800012413

Leng, M.J., Marshall, J.D., 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23, 811-831. DOI: https://doi.org/10.1016/j.quascirev.2003.06.012

Liesa, C.L., Casas, A.M., Simón, J.L., 2018. La tectónica de inversión en una región intraplaca: La Cordillera Ibérica. Revista de la Sociedad Geológica de España, 31, 23-50.

Logan, B.W., Rezak, R., Ginsburg, R.N., 1964. Classification and environmental significance of algal stromatolites. The Journal of Geology, 72, 68-83. DOI: https://www.jstor.org/stable/30071097

Long, D.G., 2017. Evidence of flash floods in Precambrian gravel dominated ephemeral river deposits. Sedimentary Geology, 347, 53-66. DOI: https://doi.org/10.1016/j.sedgeo.2016.11.006

Machel, H.G., Burton, E., 1991. Factors governing cathodoluminescence in calcite and dolomite and their implications for studies of carbonate diagenesis. In: Barker, C.E., Kopp, O.C. (eds.). Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications. Society for Sedimentary Geology (SEPM) Short Course, 25, 37-58.

Martín-Bello, L., Arenas Abad, C., Alonso-Zarza, A.M., 2017. Preliminary interpretation of the stable-isotope composition in lacustrine stromatolites of the Sierra de Alcubierre (Miocene, Ebro Basin, Spain). Geogaceta, 61, 171-174.

Martín‐Bello, L., Arenas, C., Jones, B., 2019. Lacustrine stromatolites: Useful structures for environmental interpretation–an example from the Miocene Ebro Basin. Sedimentology, 66(6), 2098-2133. DOI: https://doi.org/10.1111/sed.12577

Martín-Chivelet, J., Giménez, R., 1992. Palaeosols inmicrotidal carbonate sequences, Sierra de Utiel Formation, Upper Cretaceous, SE Spain. Sedimentary Geology, 81, 125-145. DOI: https://doi.org/10.1016/0037-0738(92)90060-5

Martín-Chivelet, J., Floquet, M., García-Senz, J., Callapez, P.M., López-Mir, B., Muñoz, J.A., Dinis, P.M., 2019. Late Cretaceous post-rift to convergence in Iberia. In: Quesada, C., Oliveira, J.T. (eds.). The Geology of Iberia: A Geodynamic Approach. Heidelberg, Springer, 285-376.

McGowan, J.H., Groat, G.C., 1971. Van Horn Sandstone, West Texas: an alluvial fan model for mineral exploration. Bureau of Economic Geology, University of Texas, 72, 57pp.

McKenzie, J.A., 1985. Stable-isotope mapping in Messinian evaporative carbonates of central Sicily. Geology, 13(12), 851-854. DOI: https://doi.org/10.1130/0091-7613(1985)13%3C851:SMIMEC%3E2.0.CO;2

Mercedes-Martín, R., Salas, R., Arenas, C., 2014. Microbial-dominated carbonate platforms during the Ladinian rifting: Sequence stratigraphy and evolution of accommodation in a fault-controlled setting (Catalan Coastal Ranges, NE Spain). Basin Research, 26, 269-296. DOI: https://doi.org/10.1111/bre.12026

Meyers, W.J., 1978. Carbonate cements: their regional distribution and interpretation in Mississippian lime- stones of southwestern New Mexico. Sedimentology, 25, 371-400. DOI: https://doi.org/10.1111/j.1365-3091.1978.tb00318.x

Miall, A.D., 1977. A review of the braided-river depositional environment. Earth-Science Reviews, 13(1), 1-62. DOI: https://doi.org/10.1016/0012-8252(77)90055-1

Monty, C.L.V., 1976. The origin and development of cryptalgal fabrics. In: Walter, M.R. (ed.). Stromatolites, Developments in Sedimentology, 20, 193-249. DOI: https://doi.org/10.1016/S0070-4571(08)71137-3

Monty, C.L., Mas, J.R., 1981. Lower Cretaceous (Wealdian) blue-green algal deposits of the province of Valencia, eastern Spain. In: Monty, C. (ed.). Phanerozoic stromatolites: case histories. Berlin, Heidelberg, Springer, 85-120.

Nichols, G.J., Fisher, J.A., 2007. Processes, facies and architecture of fluvial distributary system deposits. Sedimentary Geology, 195(1-2), 75-90. DOI: https://doi.org/10.1016/j.sedgeo.2006.07.004

Nickel, E., 1983. Environmental significance of freshwater oncoids, Eocene guarga formation, Southern Pyrenees, Spain. In: Peryt, T.M. (ed). Coated grains. Berlin, Heidelberg, Springer, 308-329.

Noffke, N., Awramik, S.M., 2013. Stromatolites and MISS — Differences between relatives. Geological Society of America (GSA) Today, 23, 4-9.

Ordóñez, S., García del Cura, M., 1977. Facies oncolíticas en medio continental: Aplicación al sector SE de la Cuenca del Duero. Estudios geológicos, 33, 459-466.

Ordóñez, S., García del Cura, M., 1983. Recent and Tertiary fluvial carbonates in Central Spain. Modern and ancient fluvial systems, 485-497. DOI: https://doi.org/10.1002/9781444303773.ch39

Ordóñez, S., Carballal, R., García del Cura, A., 1980. Carbonatos biogénicos actuales en la cuenca del río Dulce (provincia de Guadalajara). Boletín de la Real Sociedad Española de Historia Natural (Sección Geológica), 78, 303-315.

Ordóñez, S., Martín, J.G., Del Cura, M.G., Pedley, H.M., 2005. Temperate and semi-arid tufas in the Pleistocene to Recent fluvial barrage system in the Mediterranean area: The Ruidera Lakes Natural Park (Central Spain). Geomorphology, 69(1-4), 332-350. DOI: https://doi.org/10.1016/j.geomorph.2005.02.002

Parcerisa, D., Gómez-Gras, D., Martín-Martín, J.D., 2006. Calcretes, oncolites, and lacustrine limestones in Upper Oligocene alluvial fans of the Montgat area (Catalan Coastal Ranges, Spain). In: Alonso-Zarza, A.M., Tanner, L.H. (eds.). Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates. London, Geological Society of America, 416, 105-117. DOI: https://doi.org/10.1130/2006.2416(07)

Pérez, A., Pardo, G., Villena, J., González, A., 1983. Estratigrafía y sedimentología del Paléogeno de la cubeta de Montalbán, prov. de Teruel, España. Boletín de la Real Sociedad Española de Historia Natural, Sección Geológica, 81(3-4), 197-223.

Petryshyn, V.A., Corsetti, F.A., Berelson, W.M., Beaumont, W., Lund, S.P., 2012. Stromatolite lamination frequency, Walker Lake, Nevada: Implications for stromatolites as biosignatures. Geology, 40, 499-502. DOI: https://doi.org/10.1130/G32675.1

Platt, N.H., 1989. Lacustrine carbonates and pedogenesis: sedimentology and origin of palustrine deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N Spain. Sedimentology, 36, 665-684. DOI: https://doi.org/10.1111/j.1365-3091.1989.tb02092.x

Platt, N.H., Wright, V.P., 1991. Lacustrine carbonates: facies models, facies distributions and hydrocarbon aspects. In: Anadón, P., Cabrera, L., Kelts, K. (eds.). Lacustrine Facies Analysis. Special Publication International Association of Sedimentologists, 13, 57-74. DOI: https://doi.org/10.1002/9781444303919.ch3

Plaziat, J.C., 1984. Le domaine Pyrénnéen de la fin du Crétacé à la fin de l’Éocène. Stratigraphie, paléoenvironnements et évolution paléogéographique. PhD Thesis. Orsay, Université Paris-Sud, 1362pp.

Prieto-Márquez, A., Dalla Vecchia, F.M., Gaete, R., Galobart, À., 2013. Diversity, relationships, and biogeography of the lambeosaurine dinosaurs from the European Archipelago, with description of the new aralosaurin Canardia garonnensis. PLoS One, 8(7), e69835. DOI: https://doi.org/10.1371/journal.pone.0069835

Renaut, R.W., Owen, R.B., Jones, B., Tiercelin, J.J., Tarits, C., Ego, J.K., Konhauser, K.O., 2013. Impact of lake-level changes on the formation of thermogene travertine in continental rifts: Evidence from Lake Bogoria, Kenya Rift Valley. Sedimentology, 60, 428-468. DOI: https://doi.org/10.1111/j.1365-3091.2012.01347.x

Riding, R., 1991. Classification of microbial carbonates. In: Riding, R. (ed.). Calcareous Algae and Stromatolites. Berlin, Springer-Verlag, 21-51. DOI: https://doi.org/10.1007/978-3-642-52335-9_2

Riding, R., 2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179-214. DOI: https://doi.org/10.1046/j.1365-3091.2000.00003.x

Riding, R., 2008. Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geologica Croatica, 61(2-3), 73-103. DOI: https://doi.org/10.4154/GC.2008.10

Riding, R., 2011. Microbialites, stromatolites and thrombolites. In: Reitner, J., Thiel, V. (eds.). Encyclopedia of Geobiology. Heidelberg, Springer, 635-654. DOI: https://doi.org/10.1007/978-1-4020-9212-1_196

Roche, A., Vennin, E., Bouton, A., Olivier, N., Wattinne, A., Bundeleva, I., Deconinck, J.F., Virgone, A., Gaucher, E.C., Visscher, P.T., 2018. Oligo-Miocene lacustrine microbial and metazoan buildups from the Limagne Basin (French Massif Central). Palaeogeography, Palaeoclimatology, Palaeoecology, 504, 34-59. DOI: https://doi.org/10.1016/j.palaeo.2018.05.001

Salas, R., Casas, A., 1993. Mesozoic extensional tectonics, stratigraphy, and crustal evolution during the Alpine cycle of the eastern Iberian Basin. Tectonophysics, 228, 33-55. DOI: https://doi.org/10.1016/0040-1951(93)90213-4

Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Meléndez, A., Alonso, A., 2001. Evolution of the Mesozoic Central Iberian Rift System and its Cainozoic inversion (Iberian Chain). In: Ziegler, P.A., Cavazza, W., Robertson, A.H.F., Crasquin-Soleau, S. (eds.). Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Paris, Mémoires du Muséum National d’Histoire Naturelle, 186,145-186.

Sánchez-Moya, Y., Sopeña, A., 2004. El Rift Mesozoico Ibérico. In: Vera, J.A. (ed.). Geología de España. Madrid, Sociedad Geológica de España and Instituto Geológico y Minero de España, 484-522.

Sanz, M.E., Alonso-Zarza, A.M., Calvo, J.P., 1995. Carbonate pond deposits related to semi-arid alluvial systems: examples from the Tertiary Madrid Basin, Spain. Sedimentology, 42, 437-452. DOI: https://doi.org/10.1111/j.1365-3091.1995.tb00383.x

Segura, M., García Hidalgo, J.F., Carenas, B., Gil, J., García, A., 2004. Evolución paleogeográfica de la Cuenca Ibérica en el Cretácico Superior. Geogaceta, 36, 103-116.

Sellés, A.G., Vila, B., 2015. Re-evaluation of the age of some dinosaur localities from the southern Pyrenees by means of megaloolithid oospecies. Journal of Iberian Geology, 41(1), 125-139. DOI: https://doi.org/10.5209/rev_JIGE.2015.v41.n1.48659

Seong-Joo, L., Browne, K.M., Golubic, S., 2000. On stromatolite lamination. In: Riding, R., Awramik, S.M. (eds.). Microbial Sediments. Berlin, Springer-Verlag, 16-24. DOI: https://doi.org/10.1007/978-3-662-04036-2_3

Sequero, C., Aurell, M., Bádenas, B., 2020. Oncoid distribution in the shallow domains of a Kimmeridgian carbonate ramp (Late Jurassic, NE Spain). Sedimentary Geology, 398, 105585. DOI: https://doi.org/10.1016/j.sedgeo.2019.105585

Shapiro, R.S., Fricke, H.C., Fox, K., 2009. Dinosaur-bearing oncoids from ephemeral lakes of the Lower Cretaceous Cedar Mountain Formation, Utah. Palaios, 24(1), 51-58. DOI: https://doi.org/10.2110/palo.2008.p08-013r

Sheehan, P.M., Harris, M.T., 2004. Microbialite resurgence after the Late Ordovician extinction. Nature, 430(6995), 75-78. DOI: https://doi.org/10.1038/nature02654

Sohn, Y.K., Rhee, C.W., Kim, B.C., 1999. Debris flow and hyperconcentrated flood-flow deposits in an alluvial fan, northwestern part of the Cretaceous Yongdong Basin, Central Korea. The Journal of Geology, 107(1), 111-132. DOI: https://doi.org/10.1086/314334

Suarez-Gonzalez, P., Quijada, I.E., Benito, M.I., Mas, R., Merinero, R., Riding, R., 2014. Origin and significance of lamination in Lower Cretaceous stromatolites and proposal for a quantitative approach. Sedimentary Geology, 300, 11-27. DOI: https://doi.org/10.1016/j.sedgeo.2013.11.003.

Teranes, J.L., McKenzie J.A., 2001. Lacustrine oxygen isotope record of 20th-century climate change in central Europe: Evaluation of climatic controls on oxygen isotopes in precipitation. Journal of Paleolimnology, 26, 131-146. DOI: https://doi.org/10.1023/A:1011175701502

Torromé, D., Aurell, M., 2024. Upper Campanian continental oncolites in the Montalbán subbasin (Allueva Fm., Iberian Chain). Geogaceta 75, 3-6.

Torromé, D., Aurell, M., Bádenas, B., 2022. A mud-dominated coastal plain to lagoon with emerged carbonate mudbanks: the imprint of low-amplitude sea level cycles (mid-Upper cretaceous, South Iberian Ramp). Sedimentary Geology, 476, 106178. DOI: https://doi.org/10.1016/j.sedgeo.2022.106178

Torromé, D., Aurell, M., Martín-Pérez, A., Košir, A., 2023. A carbonate palustrine system with marshes and shallow ephemeral lakes (Campanian, northeastern Iberian Basin). Sedimentary Geology, 456, 106516. DOI: https://doi.org/10.1016/j.sedgeo.2023.106516

Vázquez-Urbez, M., Arenas, C., Sancho, C., Osácar, C., Auqué, L., Pardo, G., 2010. Factors controlling present day tufa dynamics in the Monasterio de Piedra Natural Park (Iberian Range, Spain): depositional environmental settings, sedimentation rates and hydrochemistry. International Journal of Earth Sciences, 99, 1027-1049. DOI: https://doi.org/10.1007/s00531-009-0444-2

Vázquez-Urbez, M., Arenas, C., Pardo, G., Pérez- Rivarés, J., 2013. The effect of drainage reorganization and climate on the sedimentologic evolution of intermontane lake systems: the final fill stage of the Tertiary Ebro Basin (Spain). Journal of Sedimentary Research, 83, 562-590. DOI: https://doi.org/10.2110/jsr.2013.47

Vicente, A., Expósito, M., Sanjuan, J., Martín-Closas, C., 2016. Small sized charophyte gyrogonites in the Maastrichtian of Coll de Nargó, Eastern Pyrenees: An adaptation to temporary floodplain ponds. Cretaceous Research, 57, 443-456. DOI: https://doi.org/10.1016/j.cretres.2015.07.017

Vila, B., Sellés, A.G., Brusatte, S.L., 2016. Diversity and faunal changes in the latest Cretaceous dinosaur communities of southwestern Europe. Cretaceous Research, 57, 552-564. DOI: https://doi.org/10.1016/j.cretres.2015.07.003

Woo, K.S., Khim, B.K., Yoon, H.S., Lee, K.C., 2004. Cretaceous lacustrine stromatolites in the Gyeongsang Basin (Korea): records of cyclic change in paleohydrological condition. Geosciences Journal, 8, 179-184. DOI: https://doi.org/10.1007/BF02910193

Zamarreño, I., Anadón, P., Utrilla, R., 1997. Sedimentology and isotopic composition of Upper Palaeocene to Eocene non-marine stromatolites, eastern Ebro Basin, NE Spain. Sedimentology, 44, 159-176. DOI: https://doi.org/10.1111/j.1365-3091.1997.tb00430.x

Downloads

Published

2024-12-10

Issue

Section

Carbonate successions from Iberia and the Caribbean - Homage to Ramon Salas