Petrology and geochemistry of Plio-Quaternary high-Nb basalts from Shahr-e-Babak area:Insights into post-collision magmatic processes in the Kerman Cenozoic Magmatic Arc

Authors

  • Sakine Moradi Tarbiat Modares University
  • Tayebeh Khaksar Department of Geology, Tarbiat Modares University, Tehran, Jalal Al Ahmad, 14115-175, Iran
  • Asma Nazarinia Department of Geology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
  • Amjad Hussain State Key Laboratory of Geological Processes and Mineral Resources, Collaborative Innovation Center for Exploration of StrategicMineral Resources, School of Earth Resources, China University of Geosciences, Wuhan 430074, PR China

DOI:

https://doi.org/10.1344/GeologicaActa2022.20.8

Keywords:

High-Nb basalts, Post-collision, Metasomatized mantle wedge, Slab break-off, Kerman Cenozoic Magmatic Arc

Abstract

Post-collision Pliocene-Quaternary basaltic rocks outcrop in the Kerman Cenozoic Magmatic Arc (KCMA) to the northwest and east of Shahr-e-Babak city. These porphyritic and vesicular basaltic rocks are composed essentially of clinopyroxene, olivine, and plagioclase. These basalts display alkaline affinity and negative Ta, Zr, Rb anomaly, but slightly negative Nb anomaly, relative to elements with similar compatibility, and positive Ba, K, Sr anomaly, suggesting their magma source related to subduction-accretion with implication of subducted slab derived components to the source. In the primitive mantle and chondrite normalized diagrams, these rocks show trace elements (except depletion in Nb, Ta) and Rare Earth Element (REE) patterns similar to the Ocean Island Basalts (OIB) and share trace and major element characteristics similar to High-Nb Basalts (HNBs). Geochemical analyses for major and trace elements suggest that the Shahr-e-Babak HNBs have undergone insignificant crustal contamination and minor olivine + Fe-Ti oxide ±clinopyroxene fractional crystallization. These HNBs derived from a partial melting (~5%) of garnet-peridotite mantle wedge, which have already metasomatized by overlying sediments, fluids, and adakitic (slab-derived) melts as major metasomatic agents in post-collision setting in the KCMA. We conclude that asthenospheric upwelling arising from slab break-off followed by the roll-back of subducting Neotethys slab also triggered metasomatized peridotite mantle wedge and caused its partial melting in the subduction zone.

References

Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B., Wortel, R., 2011. Zagros

orogeny: a subduction-dominated process. Geological Magazine, 148, 692-725.

Aguillon-Robles, A., Calmus, T., Benoit, M., Bellon, H., Maury, R.C., Cotton, J., Bourgois, J., Michard, F., 2001. Late Miocene

adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California? Geology, 29, 531-534.

Ahmadian, J., Murata, M., Nadimi, A., Ozawa, H., Takeshi, K., 2014. Recent tectonic activity of Iran deduced from young magmatism evidences. Bulletin of Center for Collaboration in Community Naruto University of Education, 28, 23-38.

Ahmadzadeh, G., Jahangiri, A., Lentz, D., Mojtahedi, M., 2010. Petrogenesis of Plio-Quaternary post-collisional ultrapotassic

volcanism in NW of Marand, NW Iran. Journal of Asian Earth Science, 39, 37-50.

Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229, 211-238.

Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., Mitchell, J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Volcanology and Geothermal Research, 102, 67-95.

Alirezaei, A., Arvin, M., Dargahi, S., 2017. Adakite-like signature of porphyry granitoid stocks in the Meiduk and Parkam porphyry copper deposits, NE of Shahr-e-Babak, Kerman, Iran: Constraints on geochemistry. Ore Geology Reviews, 88, 370-383.

Allen, M., Jackson, J., Walker, R., 2004. Late Cenozoic reorganization of the Arabia–Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23, TC 2008.

Allen, M.B., Kheirkhah, M., Neill, I., Emami, M.H., McLeod, C.L., 2013. Generation of arc and within-plate chemical signatures in collision zone magmatism: quaternary lavas from Kurdistan Province, Iran. Petrology, 54, 887-911.

Amidi, S.M., 1977. Étude géologique de la région de Natanz-Surk (Iran, Central). Ph.D. thesis. France, Université Grénoble,

pp.

Amidi, S.M., Emami, M.H., Michel, R., 1984. Alkaline character of Eocene volcanism in the middle part of central Iran and its geodynamic situation. Geologische Rundschau, 73, 917-932.

Amraee, A., Zareisahamieh, R., Moayyed, M., Ahmadikhalaji, A., AzimZadeh, A.M., Santos, J.F., 2019. Peshtasar basalts: An example of post-collision basalts in sedimentary basin of Moghan, NW Iran. Journal of Earth System Science, 128(3), 1-22.

Atapour, H., 1994. Petrology and geochemistry of shoshonitic association of Goud-e-Biabani Bardsir area, Kerman province

(In Persian). M.Sc. Thesis. Shahid Bahonar University of Kerman, 244pp.

Azizi, H., Jahangiri, A., 2008. Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran. Geodynamics, 45, 178-190.

Azizi, H., Asahara, Y., Tsuboi, M., 2014. Quaternary high-Nb basalts: Existence of young oceanic crust under the Sanandaj–

Sirjan zone, NW Iran. International Geology Review, 56(2), 167-186.

Bamorovat, M., Dargahi, S., Arvin, M., 2014. Mineralogy, petrology and tectonic setting of Neogene basaltic magmatism in

Dehaj- Javazm area, northwest of Shahre-Babak. 21th Iranian conference on crystallography and mineralogy.

Berberian, F., Berberian, M., 1981. Tectono-plutonic episodes in Iran. In: Gupta, H.K., Delany, F.M. (eds.). Zagros-Hindu Kush–Himalaya Geodynamic Evolution. Washington DC, American Geophysical Union, 3, 5-32.

Berberian, M., King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210-265.

Caillet, C., Dehlavi, P., Martel-Jantin, B., 1978. Géologie de la région de Saveh (Iran). Contribution a l’étude du volcanisme

et du plutonism Tertiaires de la zone de l’Iran Central (in french). Thèse de Doctorat de Specialities. Grenoble (France), Université Grenoble, 325pp.

Carlson, R.W., Pearson, D.G., James, D.E., 2005. Physical, chemical, and chronological characteristics of continental mantle. Reviews of Geophysics, 43, 1-24.

Castillo, P.R., Solidum, R.U., Punongbayan, R.S., 2002. Origin of high field strength element enrichment in the Sulu Arc, southern Philippines, revisited. Geology, 30, 707-710.

Castillo, P.R., Rigby, S.J., Solidum, R.U., 2007. Origin of high field strength element enrichment in volcanic arcs: Geochemical

evidence from the Sulu Arc, southern Philippines. Lithos, 97, 271-288.

Castillo, P.R., 2008. Origin of the adakite–high-Nb basalt association and its implications for post subduction magmatism in Baja California, Mexico. Geological Society of America Bulletin, 120, 451-462.

Castillo, P.R., 2012. Adakite petrogenesis. Lithos, 134, 304-316.

Dabiri, R., Emami, M.H., Mollaei, H., Chen, B., Abedini, M., Rashidnejad, N., Ghaffari, M., 2011. Quaternary postcollision alkaline volcanism NW of Ahar (NW Iran): Geochemical constraints of fractional crystallization process. Geologica Carpathica, 62, 547-562.

Davies, J.H., von Blanckenburg, F., 1995. Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planetry Science Letter, 129, 85-102.

Defant, M.J., Jackson, T.E., Drummond, M.S., De Boer, J.Z., Bellon, H., Feigenson, M.D., Maury, R.C., Stewart, R.H., 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: An overview. London, The Geological Society, 149, 569-579.

Defant, M.J., Kepezhinskas, P., 2001. Evidence suggests slab melting in arc magmas: EOS. Transactions of the American Geophysical Union, 83(23), 62-69.

Dercourt, J., Zonenshine, L.P., Ricou, L.E., Kazmin, V.G., Le Picon, X., Knipper, A.L., Grandjacquet, C., Sbortshikov, I.M., Geyssany, J., Lepveier, C., 1986. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics, 123, 241-315.

Dewey, J.F., Pitman, W.C., Ryan, W.B.F., Bonnin, J., 1973. Plate Tectonics and the Evolution of the Alpine System. Geological Society of America Bulletin, 84, 3137-3180.

Dimitrijevic, M.D., 1973. Geology of Kerman Region. Geology Survey of Iran, Report No. 52, 334pp.

Ellam, R., 1992. Lithospheric thickness as a control on basalt geochemistry. Geology, 20(2), 153-156.

Emami, M.H., 1981. Géologie de la région de Qom-Aran (Iran): Contribution a l’étude dynamique et géochimique du volcanisme Tertiaire de l’Iran Central. Ph.D. Thèse. France, Université Grenoble, 489pp.

Fadaeian, M., Jahangiri, A., Ao, S., Kamali, A.A., Xiao, W., 2022. Geochemistry and Petrogenesis of Shoshonitic Dyke Swarm

in the Northeast of Meshkinshahr, NW Iran. Minerals, 12(309), 2-27.

Fitton, J.G., Dunlop, H.M., 1985. The Cameroon Line, West Africa, and its bearing on the origin of oceanic and continental alkali basalts. Earth and Planetary Science Letters, 72, 23-38.

Frey, F.A., Green, D.H., Roy, S.D., 1978. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. Petrology, 19, 463-513.

Ghadami, G.R., Moradian, A., Mortazavi, M., 2008. Post-Collisional Plio-Pleistocene Adakitic volcanism in Centeral Iranian Volcanic Belt: Geochemical and geodynamic implications. Islamic Republic of Iran, Journal of Sciences, 19, 223-236.

Ghadami, G.R., 2009. Petrography, geochemistry and petrogenesis of intrusive and subvolcanic masses (adakitic) in Northwest Share-Babak, Kerman. Unpublished Ph.D. Thesis. Islamic Republic of Iran, Shaheed Bahonar University of Kerman, 334pp.

Ghadami, G.R., 2016. Geochemical and Petrogenesis of Granitoides rocks in South-East of Centeral Iranian Volcanic Belt, North-West of Share-Babak, Kerman Province, Iran. Journal of Tethys, 4(4), 295-311.

Ghadami, G.R., Nazarinia, A., 2022. Adakite signatures in granitoids northwest of Shahr-e-Babak, Kerman, Iran: constraints from geochemistry. Journal of mineralogy and geochemistry, 197(3), 263-283.

Gazel, E., Carr, M.J., Hoernle, K., Feigenson, M.D., Szymanksi, D., Hauff, F., Bogaard, P., 2009. The Galapagos-OIB signature

in southern Central America: mantle refertilization by arc–hot spot interaction. Geochemistry, Geophysics, Geosystem, 10(2), 1-32.

Ge, X.Y., Li, X.H., Chen, Z.G., Li, W.P., 2002. Geochemistry and petrogenesis of Jurassic high Sr/low Y granitoids in eastern China: constrains on crustal thickness. Chinese Science Bulletin, 47, 962-968.

Ghasemi, A., Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj–Sirjan zone (Iran). Journal of Asian Earth Sciences,

, 683-693.

Ghorbani, M.R, Graham, I.T., Ghaderi, M., 2014. OligoceneMiocene geodynamic evolution of the central part of Urumieh-Dokhtar Arc of Iran. International Geology Review, 56, 1039-1050.

Glennie, K.W., 2000. Cretaceous tectonic evolution of Arabia’s eastern plate margin: A tale of two oceans. In: Abdulrahman, S., Alsharhan, Scott, R.W. (eds.), Middle East models of Jurassic/Cretaceous carbonate systems. Society of Economic Paleontologists and Mineralogists, 69 (Special Publication), 9-20.

Gill, J.B., 1981. Orogenic Andesites and Plate Tectonics. Minerals and Rocks, 16, 390pp.

Gill, J.B., 1984. Sr-Nd-Pb isotopic evidence that both MORB and OIB sources contribute to oceanic island arc magmas in Fiji.

Earth and Planetary Science Letters, 68, 443-458.

Guo, F., Nakamura, E., Fan, W.M. Kobayoshi, K., Li, C.W., 2007. Generation of Paleocene adakitic andesites by magma mixing, Yanji area, NE China. Journal of Petrology, 48, 661-692.

Haschke, M., Ahmadian, J., Murata, M., McDonald, I., 2010. Copper mineralization prevented by arc-root delamination during Alpine–Himalayan collision in Central Iran. Economic Geology, 105, 855-865.

Hassanzadeh, J., 1993. Metallogenic and Tectonomagmatic Events in the SE Sector of the Cenozoic Active Continental Margin of Iran (Shahre-Babak Area, Kerman Province). Ph.D Thesis. Los Angeles, University of California, unpublished, 204pp.

Hastie, AR., Mitchell, S.F., Kerr, A.C., Minifie, J., Millar, I.L., 2011. Geochemistry of rare high Nb basalt lavas: are they derived from a mantle wedge metasomatized by slab melts? Geochimica et Cosmochimica Acta, 75, 5049-5072.

Hastie, A.R., Mitchell, S.F., Treloar, P.J., Kerr, A.C., Neill, I., Barfod, D.N., 2013. Geochemical components in a Cretaceous island arc: The Th/La–(Ce/Ce*)Nd diagram and implications for subduction initiation in the inter-American region. Lithos, 162-163, 57-69.

Hill, R.I., Campbell, I.H., Davies, G.F., Griffiths, R.W., 1992. Mantle plumes and continental break-up. Earth and Planetary Science Letters, 104, 398-416.

Hosseini, S.Z., Arvin, M., Oberhansli, R., Dargahi, S., 2009. Geochemistry and Tectonic Setting of Pleistocene Basaltic Lava Flows in the Shahre-Babak Area, NW of Kerman, Iran: Implication for the Evolution of Urumieh- Dokhtar Magmatic Assemblage. Islamic Republic of Iran, Journal of Sciences, 20(4), 331-342.

Hosseini, S.Z., 2016. Geochemistry, petrogenesis and tectonic setting of the Sarcheshmeh Eocene mafic lava flows, Southwest of Rafsanjan. Geoscience, 25(100), 209-220.

Hou, Z., Zhang, H., Pan, X., Yang, Z., 2011. Porphyry Cu (Mo–Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 39(1-2), 21-45.

Hughes, C.J., 1982. Igneous Petrology. Amsterdam, Elsevier, 420pp.

Hussain, A., Zhao, K.D., Arif, M., Palmer, M.R., Chen, W., Zhang, Q., Li, Q., Jiang, S.Y., Girei, M.B., 2020. Geochronology, mineral chemistry and genesis of REE mineralization in alkaline rocks from the Kohistan Island Arc, Pakistan. Ore Geology Reviews, 126, 103749.

Imaoka, T., Nakashima, K., Kamei, A., Itaya, T., Ohira, T., Nagashima, M., Kono, N., Kiji, M., 2014. Episodic magmatism at 105 Ma in the Kinki district, SW Japan: Petrogenesis of Nbrich lamprophyres and adakites, and geodynamic implications. Lithos, 184-187, 105-131.

Jahangiri, A., 2007. Post-Collisional Miocene Adakitic Volcanism in NW Iran: Geochemical and Geodynamic Implications. Journal of Asian Earth Sciences, 30, 433-447.

Kepezhinskas, P.K., Defant, M.J., Drummond, M.S., 1995. Na metasomatism in the sub-arc mantle by slab melt-peridotite

interaction: Evidence from mantle xenoliths in the Kamchatka arc. Journal of Petrology, 36, 1505-1527.

Kepezhinskas, P., Kepezhinskas, N., Berdnikov, N., 2019. Gold, palladium and platinum enrichments in arcs: Role of mantle

wedge, arc crust and halogen-rich slab fluids. Tomsk (Russia), Proceedings of the E3S Web Conference, 98, 1-5.

Kepezhinskas, P., Berdnikov, N., Kepezhinskas, N., Konovalova, N., 2022. Adakites, High-Nb Basalts and Copper–Gold Deposits in Magmatic Arcs and Collisional Orogens: An Overview. Geosciences, 12, 29, 2-60.

Keskin, M., 2003. Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30, 1-4.

Khaksar, T., Rashidnejad-Omran, N., Chen, F., Song, S., Li, S.h.Q., Ghaderi, M., 2020. Zircon U-Pb ages and magmatic history of the Kashan plutons in the central UrumiehDokhtar magmatic arc, Iran: Evidence for Neotethyan subduction during the Paleogene-Neogene. Earth Science, 31(1), 53-68.

Kheirkhah, M., Neill, I., Allen, M.B., Ajdari, K., 2013. Smallvolume melts of lithospheric mantle during continental collision: Late Cenozoic lavas of Mahabad, NW Iran. Journal of Asian Earth Sciences, 74, 37-49.

Kieffer, B., Arndt, N., Lapierre, H., Bastien, F., Bosch, D., Pecher, A., Yirgu, G., Ayalew, D., Weis, D., Jerram, D.A., Keller, F., Meugniot, C., 2004. Flood and shield basalts from Ethiopia: magmas from the African Superswell. Journal of Petrology, 45, 793-834.

König, S., Schuth, S., 2010. Deep melting of old subducted oceanic crust recorded by superchondritic Nb/Ta in modern island arc lavas. Earth Planetry Science Letters, 301, 265-274.

Kouhestani, H., Ghaderi, M., Emami, M.H., Meffre, S., Kamenetsky, V., McPhie, J., Zaw, K., Nasiri Bezenjani, R., 2017. Compositional characteristics and geodynamic significance of late Miocene volcanic rocks associated with the Chah Zard epithermal gold–silver deposit, southwest Yazd, Iran. Island Arc, 27(1), 1-15.

LeBas, M.J., Lemaitre, R.W., Streckeisen, A., Zanettin, B., 1986. A Chemical Classification of Volcanic-Rocks Based on the Total Alkali Silica Diagram. Journal of Petrology, 27(3), 745-75.

Le Maitre, R.W. (ed.), 2002. Igneous Rocks: A Classification and Glossary of Terms. Recomentations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge, Cambridge University Press, 236pp.

Liègeois, J.P., 1998. Preface-some words on the post-collisional magmatism. Lithos, 45, 15-17.

Liu, H., Li, Y., Wu, L., Huangfu, P., Zhang, M., 2018. Geochemistry of high-Nb basalt-andesite in the Erguna Massif (NE China)

and implications for the early Cretaceous back-arc extension. Geological Journal, 54, 291-307.

Lustrino, M., Wilson, M., 2007. The Circum-Mediterrane an Anorogenic Cenozoic Igneous Province. Earth-Science Review, 81, 1-65.

Mazhari, S.A., 2016. Petrogenesis of adakite and high‐Nb basalt association in the SW of Sabzevar zone, NE of Iran: Evidence for slab melt-mantle interaction. African Earth Sciences, 116, 170-181.

McQuarrie, N., Stock, J.M., Verdel, C., Wernicke, B.P., 2003. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophysical Research Letter, 30(20), 1-6.

Macpherson, C.G., Chiang, K.K., Hall, R., Nowell, G.M., Castillo, P.R. Thirlwall, M.F., 2010. Plio-Pleistocene intra-plate magmatism from the southern Sulu Arc, Semporna peninsula, Sabah, Borneo: Implications for high-Nb basalt in subduction zones. Volcanology and Geothermal Research, 190, 25-38.

Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., Champion, D., 2005. An overview of adakite, tonalite-trondhjemitegranodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79, 1-24.

Milton, D.J., 1977. Qal’eh Hasan Ali maars, central Iran. Bulletin Volcanologique, 40(3), 201-208.

Mohajjel, M., Fergusson, C., 2000. Dextral transpression in Late Cretaceous continental collision Sanandaj-Sirjan Zone, western Iran. Structural Geology, 22, 1125-1139.

Mohajjel, M., Fergusson, C.L., Sahandi, M.R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–

Sirjan Zone, western Iran. Journal of Asian Earth Science, 21,397-412.

Moinvaziri, H., Ahmadi, A., 1991. Petrography and petrology of igneous rocks (in Persian). Tehran, Tehran University Press, 539pp.

Molinaro, M., Zeyen, H., Laurencin, X., 2005. Lithospheric structure beneath the southeastern Zagros Mountains, Iran:

recent slab break-off? Terra Nova, 17, 1-6.

Moradi, S., Ghorbani, M.R., Jiang, S.Y., Christiansen, E., 2021. Mafic to intermediate composition intrusions from the Kahak area, central Urumieh-Dokhtar arc of Iran: transition from Eocene to Miocene intra-arc extensional magmatism. Mineralogy and Petrology, 115, 445-466.

Moradian, A., Peacock, S.M., Rushmer, T., 1997. Geochemistry, geo-chronology and petrography of feldspathoid bearing rocks in Urumieh-Dokhtar Volcanic Belt, Iran. Ph.D. Thesis. Australia, University of Wollongong, unpublished, 1-412.

Mouthereau, F., Lacombe, O., Vergés, J., 2012. Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532, 27-60.

Muller, D., Groves, D.I., Titley, S.R., 1997. Potassic igneous rocks and associated gold-cop-per mineralization. Economic Geology and the Bulletin of the Society of Economic Geologists, 92, 505.

Nakamura, Y., Tatsumoto, M., 1988. Pb, Nd, and Sr isotopic evidence for a multicomponent source for rocks of CookAustral islands and heterogeneities of mantle plumes. Geochimica et Cosmochimica Acta, 52, 2909-2924.

Navarro, J., Teramoto, E.H., Engelbrecht, B., Chang, H.K., 2020. Assessing hydrofacies and hydraulic properties of basaltic

aquifers derived from geophysical logging. Geology, 50(4), 1-13.

Nazarinia, A., Mortazavi, M., Arvin, M., Hu, R., Zhao, C., Poosti, M., 2018. U-Pb zircon dating, Sr-Nd isotope and petrogenesis

of Sarduiyeh granitoid in SE of the UDMA, Iran: implication for the source origin and magmatic evolution. International

Geology Review, 62(13-14), 1-19.

Neill, I., Meliksetian, K., Allen, M.B., Navasardyan, G., Kuiper, K., 2015. Petrogenesis of mafic collision zone magmatism: The

Armenian sector of the Turkish-Iranian Plateau. Chemical Geology, 403, 24-41.

Niu, Y.L., Wilson, M., Humphreys, E.R., O’Hara, M.J., 2012. A trace element perspective on the source of ocean island basalts (OIB) and fate of subducted ocean crust (SOC) and mantle lithosphere (SML). Episodes, 35(2), 310-327.

Noorizadeh, M., Moradian, A., Ahmadipour, H., Ghassemi M.R., Santos, J.F., 2018. Petrology, Geochemistry and Tectonomagmatic Evolution of Hezar Igneous Complex (Rayen-South of Kerman- Iran): the First Description of an Arc Remnant of the Neotethyan Subduction Zone. Islamic Republic of Iran, Journal of Sciences, 29(4), 341-359.

Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., Jolivet, L., 2008. Arc magmatism and subduction history

beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos, 106, 380-398.

Orozco-Esquivel, T., Petrone, C.M., Ferrari, L., Tagami, T., Manetti, P., 2007. Geochemical and isotopic variability in lavas from the eastern Trans-Mexican Volcanic Belt: slab detachment in a subduction zone with varying dip. Lithos, 93(1), 149-174.

Özdemir, Y., Karaoğlu, Ö., Tolluoğlu, A.Ü., Güleç¸ N., 2006. Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): The most recent post-collisional volcanism in Turkey. Chemical Geology, 226,

-211.

Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Li, X.-H., Lee, H.Y., Lin, T.H., Chiu, H.Y., 2016. New age and geochemical constraints on the origin of Quaternary adakite-like lavas in the Arabia–Eurasia collision zone. Lithos, 264, 348-359.

Pearce, J.A., 1983. Role of subcontinental lithosphere in magma genesis at active continental margins: In continental basalts and mantle xenoliths. In: Hawkesworth, C.J., Norry, M.J. (eds.). Continental Basalts and Mantle Xenoliths. Nantwich,

Shiva, 230-249.

Pearce, J.A., Bender, J.F., Delong, S.E., Kidd, W.S.F., Low, P.J., Guner, Y., Sargolu, F., Yilmaz, Y., Moorbath, S., Mitchell, J.G., 1990.

Genesis of collision volcanism in eastern Anatolia, Turkey. Volcanology and Geothermal Research, 44, 189-229.

Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1), 14-48.

Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene CalcAlkaline Volcanic Rocks from the Kastamonu Area, Northern

Turkey. Contributions to Mineralogy and Petrology, 58, 63-81.

Richards, J.P., 2003. Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation. Economical Geology, 96, 1515-1533.

Ritter, J.R.R., Christensen, U.R., 2007. Mantle Plumes – A multidisciplinary approach. Heidelberg, Springer Verlag, 1-502.

Saadat, S., Karimpour, M.H., Stern, C., 2010. Petrochemical characteristics of Neogene and Quaternary alkali olivine basalts from the Western Margin of the Lut Block, Eastern Iran. Iranian Journal of Earth Sciences, 2, 87-106.

Saadat, S., Stern, C.R., 2012. Petrochemistry of a xenolithbearing Neogene alkali olivine basalt from northeastern Iran. Volcanology and Geothermal Research, 225, 13-29.

Sajona, F.G., Maury, R.C., Bellon, H., Cotton, J., Defant, M.J., Pubellier, M., 1993. Initiation of subduction and the generation

of slab melts in western and eastern Mindanao, Philippines. Geology, 21, 1007-1010.

Saric, A., Djordjevic, M., Dimitrijevic, M.N., 1971. Geological map of Shahr-Babak, Scale 1/100000. Tehran (Iran), Geological Survey of Iran.

Shafiei, B., Haschke, M., Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44, 265-283.

Shafaii Moghadam, H., Ghorbani, Gh., Zaki Khedr, M., Fazlnia, N., Chiaradia, M., Eyuboglu, Y., Santosh, M., Galindo Francisco, C., Lopez Martinez, M., Gourgaud, A., Arai, A., 2014. Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: Implications for geodynamic evolution of the Turkish-Iranian High Plateau. Gondwana Research, 26(3-4),

-1050.

Shaker Ardakani, A., 2016. Post-collisional Plio-Pleistocene AnarDehaj adakitic subvolcanic domes in the central volcanic belt of Iran: geochemical characteristics and tectonic implications. Periodico di Mineralogia, 85, 185-200.

Stampfli, G.M., Borel, G.D., 2002. A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons. Earth and Planetary Science Letters, 196, 17-33.

Stocklin, J., Nabavi, M.H., 1973. Tectonic Map of Iran, 1:2,500,000. Geological Survey of Iran. Straub, S.M., Gómez-Tuena, A., Zellmer, G.F., Espinasa-Perena, R., Stuart, F.M., Cai, Y., Langmuir, C.H., Martin del Pozzo, A.L., Mesko, G.T., 2013. The processes of melt differentiation in arc volcanic rocks: insight from OIB-type arc magmas in the central Mexican Volcanic Belt. Petrology, 54, 665-701.

Sun, S.S., Mc Donough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (eds.). Magmatism in the Ocean Basins. London, The Geological Society, 42 (Special Publications), 313-345.

Taghipour, N., Aftabi, A., Mathur, R., 2007. Geology and Re-Os Geochronology of Mineralization of the Miduk Porphyry Copper Deposit. The Society of Resource Geology, 2, 143-160.

Takin, M., 1972. Iranian geology and continental drift in the Middle East. Nature, 235, 147-150.

Tang, G.J., Wang, Q., Wyman, D.A., Li, Z.X., Zhao, Z.H., Jia, X.H., Jiang, Z.Q., 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chemical Geology, 227(3-4), 281-300.

Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Carlton, Blackwell Scientific Publication, 312pp.

Tunini, L., Jiménez-Munt, I., Fernàndez, M., Vergés, J., Villaseñor, A., 2015. Lithospheric mantle heterogeneities beneath the

Zagros Mountains and the Iranian Plateau: a petrologicalgeophysical study. Geophysical Journal International, 200, 596-614.

Van Hunen, J., Allen, M.B., 2011. Continental collision and slab break-off: A comparison of 3-D numerical models with observations. Earth and Planetary Science Letters, 302, 27-37.

Verdel, C., Wernicke, B.P., Hassanzadeh, J., Guest, B., 2011. A Paleogene extensional arc flare-up in Iran. Tectonics, 30, 1-20.

Wang, Q., Wyman, D.A., Xu, J.F., Jian, P., Zhao, Z.H., Li, C.H., Xu, W., 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71, 2609-2636.

Wang, Q., Wyman, D., Xu, J., Wan, Y., Li, C., Zi, F., Jiang, Z., Qiu, H., Chu, Z., Zhao, Z., 2008. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): Evidence for metasomatism by slab-derived

melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155, 473-490.

Wang, T., Guo, L., Zhang, L., Yang, Q.D., Zhang, J.J., Tong, Y., Ye, K., 2015. Timing and evolution of Jurassic–Cretaceous granitoid magmatisms in the Mongol–Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings. Journal of Asian Earth Sciences, 97, 365-392.

Weaver, B.L., 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth and Planetary Science Letters, 104, 381-397.

Whitney, D.L., Evans, B.W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95, 185-187.

Wilson, M., 1989. Igneous Petrogenesis. Springer, A global Tectonic Approach, 2, 218-222.

Winchester, J.A, Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation product using immobile elements. Chemical Geology, 20, 325-343.

Wilson, M., 2007. Igneous Petrogenesis. London, Chapman & Hall, 466pp.

Xiong, X., Keppler, H., Audetat, A., Ni, H., Sun, W., Li, Y., 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica et Cosmochimica Acta, 75, 1673-1692.

Zarasvandi, A., Liaghat, S., Zentilli, M., Reynolds, P.H., 2007. 40Ar/39Ar geochronology of alteration and petrogenesis of porphyry copper-related granitoids in the Darreh-Zerreshk and Ali-Abad area, central Iran. Exploration and Mining Geology, 16, 11-24.

Zarasvandi, A., Shafiei, B., Pourkaseb, H., Moridi, S., 2011. Alteration and Mineralization in the Supergene zone of the Iju porphyry copper deposit, Northwestern Shahr-e-Babak, Kerman province. 2nd Symposium of Society of Economic Geology of Iran, Khoramabad, Iran.

Zarasvandi, A., Rezaei, M., Sadeghi, M., Pourkaseb, H., 2015. Rare earth element signatures of economic and sub-economic

porphyry copper systems in Urumieh–Dokhtar Magmatic Arc (UDMA), Iran. Ore Geology Reviews, 70, 407-423.

Zhang, C.L., Yang, D.S., Wang, H., Takahashi, Y.C., Ye, H.M., 2011. Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim Block, NW China: Two phases of mafic igneous activity with different mantle sources. Gondwana Research, 19, 177-190.

Zhang, G., Niu, Y., Song, S., Zhang, L., Tian, Z., Christy, A.G., Han, L., 2015. Trace element behavior and P-T-t evolution during partial melting of exhumed eclogite in the North Qaidam UHPM belt (NW China): Implications for adakite genesis. Lithos, 226, 65-80.

Zhu, D.C., Wang, Q., Chung, S.L., Cawood, P.A., Zhao, Z.D., 2018. Gangdese magmatism in southern Tibet and IndiaAsia convergenece since 120 Ma. In: Treloar, P.J., Searle, M.P. (eds.). Himalayan Tectonics: A Modern Synthesis. London, The Geological Society, 483 (Special Publications), 583-604.

Downloads

Published

2022-08-31

Issue

Section

Articles