Petrogenesis of the late Miocene Chenar volcanism in the southeast Urumieh-Dokhtar magmatic belt, Kerman, Iran: evidence from geochemical, U-Pb geochronologic, and Hf isotopic constraints
Petrogenesis and geochronologic of the Chenar volcanism (Iran)
DOI:
https://doi.org/10.1344/GeologicaActa2024.22.1Keywords:
Urumieh-Dokhtar magmatic arc, Dehaj-Sarduiyeh volcano-sedimentary belt, Hf isotopes, U-Pb dating, Adakite, IranAbstract
The Chenar volcanic cone intruded the southeastern part of the Dehaj-Sarduiyeh volcano-sedimentary belt, in the southeast Urumieh-Dokhtar magmatic arc in Iran. The adakitic rocks, with porphyritic texture, mainly consist of rhyodacites and dacites,commonly comprised of phenocrysts of plagioclase, hornblende and biotite, with rare K-feldspar in a groundmass composed of plagioclase, K-feldspar and quartz. They yielded U-Pb zircon ages of 5.52±0.099Ma, 5.46±0.12Ma, and 6.44±0.12Ma, and radiogenic ɛHf(t) values ranging from +3.1 to +12.7. The whole-rock geochemical analysis of these rocks reveals transitional calc-alkaline to shoshonitic characteristics.
The geochemical characteristics of the study rocks, particularly their high Sr/Y (⁓51.6-136.8) at low Y (⁓4.43–16.2ppm) and high La/Yb (⁓28.4–118.4ppm) at low Yb (⁓0.2–1.3ppm), are coherent with a high silica adakitic signature. The whole-rock positive Eu/Eu* anomaly and zircon Ce/Ce* anomaly reflect the effects of an oxidized magmatic signature where the rocks of the study area originated from a mantle source. The high silica adakite geochemical characteristics of the Chenar volcanic cone support formation by partial melting of the modified mantle under the influence of metasomatized subducted oceanic slab in a post-collisional environment.
Resumen
El cono volcánico de Chenar intruyó la parte sudoriental del cinturón volcano-sedimentario de Dehaj-Sarduiyeh, en el arco magmático sudoriental de Urumieh-Dokhtar, en Irán. Las rocas adacíticas, con textura porfídica, consisten principalmente en riodacitas y dacitas, comúnmente compuestas por fenocristales de plagioclasa, hornblenda y biotita, con poco feldespato K, en una masa de fondo compuesta por plagioclasa, feldespato K y cuarzo. Se obtuvieron edades de circón U-Pb de 5,52±0,099Ma, 5,46±0,12Ma, y 6,44±0,12Ma, y valores radiogénicos de ɛHf(t) que oscilan entre +3,1 y +12,7. El análisis geoquímico de toda la roca revela características transicionales de calcoalcalinas a shoshoníticas.
Las características geoquímicas de las rocas estudiadas, particularmente su alto Sr/Y (⁓51.6-136.8) a bajo Y (⁓4.43-16.2ppm) y alto La/Yb (⁓28.4-118.4ppm) a bajo Yb (⁓0.2-1.3ppm), son coherentes con una firma adacítica de alto contenido en sílice. La anomalía positiva Eu/Eu* en toda la roca y la anomalía Ce/Ce* en el circón reflejan los efectos de una señal magmática oxidada, con las rocas de la zona de estudio procedentes de una fuente del manto. Las características geoquímicas de la adakita con alto contenido en sílice del cono volcánico de Chenar apoyan la formación por fusión parcial del manto modificado bajo la influencia de la losa oceánica subducida metasomatizada en un entorno post-colisional.
Palabras clave: arco magmático Urumieh-Dokhtar, cinturón volcano-sedimentario Dehaj-Sarduiyeh, isótopos de Hf, datación por U-Pb, Adakita, Irán.
Resum
El con volcànic Chenar va intruïr a la part sud-est del cinturó volcànic-sedimentari Dehaj-Sarduiyeh, a l'arc magmàtic sud-est d'Urumieh-Dokhtar a l'Iran. Les roques adaquítiques, de textura porfírítica, són principalment riodacites i dacites, comunament formades per fenocristalls de plagiòclasi, hornblenda i biotita, amb poc K-feldspat, en una massa de fons composta per plagiòclasi, K-feldspat i quars. Es van obtenir valors d’edats de zircó U-Pb de 5,52±0,099Ma, 5,46±0,12Ma i 6,44±0,12Ma i valors radiogènics de ɛHf(t) que van des de +3,1 fins a +12,7. L'anàlisi geoquímica de roca sencera revela característiques de transició de calc-alcalines a shoshonítiques.
Les característiques geoquímiques de les roques d'estudi, especialment el seu elevat Sr/Y (⁓51,6-136,8) a baix Y (⁓4,43-16,2 ppm) i alt La/Yb (⁓28,4-118,4 ppm) a baix Yb (⁓0,2-1,3). ppm), són coherents amb una signatura adakítica d'alta sílice. L'anomalia Eu/Eu* positiva de tota la roca i l'anomalia del zircó Ce/Ce* reflecteixen els efectes d'una signatura magmàtica oxidada, amb les roques de l'àrea d'estudi originàries d'una font del mantell. Les característiques geoquímiques d'adakita d'alta sílice del con volcànic de Chenar donen suport a la formació mitjançant la fusió parcial del mantell modificat sota la influència de la llosa oceànica subduïda metasomatitzada en un entorn posterior a la col·lisió.
Paraules clau: arc magmàtic d'Urumieh-Dokhtar, cinturó volcànic-sedimentari de Dehaj-Sarduiyeh, isòtops Hf, datació U-Pb, adakita, Iran.
References
Aftabi, A., Atapour, H., 2009. Comments on “Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences” by J. Omrani, P. Agard, H. Whitechurch, M. Benoit, G. Prouteau, L. Jolivet. Lithos 113, 844-846.
Aguillón-Robles, A., Calmus, T., Benoit, M., Bellon, H., Maury, R. C., Cotton, J., Bourgois, J., & Michaud, F. (2001). Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California. Geology, 29(6), 531–534.
Ahmadian, J., Sarjoughian, F., Lentz, D., Esna-Ashari, A, Murata, M., Ozawa, H., 2016. Eocene K-rich adakitic rocks in the Central Iran: implications for evaluating its Cu–Au–Mo metallogenic potential. Ore Geology Reviews 72, 323–42.
Alexander, E., Wielicki, M., Harrison, T., DePaolo, D., Zhao, Z., Zhu, D., 2019. Hf and Nd isotopic constraints on pre-and syn collisional crustal thickness of southern Tibet. Journal of Geophysical. Research. Solid Earth 124 (11), 11038–11054.
Angus, D.A., Wilson, D.C., Sandvol, E., Ni, J.F., 2006. Lithospheric structure of the Arabian and Eurasian collision zone in eastern Turkey from S-wave receiver functions. Geophysical Journal 166, 1335–1346.
Arvin, M., Pan, Y., Dargahi, S., Malekizadeh, A., Babaei, A., 2007. Petrochemistry of the SiahKuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction. Journal Asian Earth Science 30, 474–489.
Asadi, A., Moore, F., Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano – plutonic belt, Kerman region, Iran: A review. Earth Sci. Rev. 138, 25-46.
Atherton, M.P., Petford, N., 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362, 144–146.
Azizi, H., Asahara, Y., Tsuboi, M., Takemura, K., Razyani, S., 2014. The role of the heterogenetic mantle in the genesis of adakites northeast of Sanandaj, northwestern Iran. Geochemistry 74, 87–97.
Azizi, H., Stern, R. J., 2019. Jurassic igneous rocks of the Central Sanandaj-Sirjan zone (Iran) mark a propagating continental rift, not a magmatic arc. Terra Nova 31, 415–423.
Babazadeh, S., Ghorbani, M.R., Cotte, J.M., et al., 2018. Multistage tectonomagmatic evolution of the central Urmieh-Dokhtar magmatic arc, south Ardestan, Iran: insights from zircon geochronology and geochemistry. Geology 33, 1-6.
Bavali, K., Motaghi, K., Sobouti, F., Ghods, A., Abbasi, M., Priestley, K., Mortezanejad, G., Rezaeian, M., 2016. Lithospheric structure beneath NW Iran using regional and teleseismic traveltime tomography. Physics of the Earth and Planetary Interiors 253, 97-107
Belousova, E.A., Griffin, W.L., Suzanne, Y.O.R., Fisher, N.I., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143, 602-622.
Bourdon, E., Eissem, J. P., Monzier, M., Robin, C., Martin, H., Cotton, J., Hall, M.L., 2002. Adakite-like lavas from Antisana Volcano (Ecuador): evidence for slab melt metasomatism beneath the Andean northern volcanic zone. Journal of Petrology 43, 199–217.
Brophy, J.G., Marsh, B.D., 1986 On the origin of high-alumina arc basalt and the mechanics of melt extraction: Journal of Petrology 27(4),763–789. doi:10.1093/petrology/27.4.763.
Castillo, P. R., 2006. An overview of adakite petrogenesis. Chin. Sci. Bull. 51, 258–268.
Castillo, P.R., 2012. Adakite petrogenesis. Lithos 134, 304–316.
Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and geochemistry of Camiguin Island: southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology 134, 33–51.
Chang, S.J., Van der Lee, S., Flanagan, M.P., Bedle, H., Marone, F., Matzel, E.M., Pasyanos, M., Rodgers, A.J., Romanowicz, B., Schmid, C., 2010. Joint inversion for three-dimensional S velocity mantle structure along the Tethyan margin. Journal of Geophysics 115, 1–22.
Chekani Moghadam, M., Tahmasbi, Z., Ahmadi-Khalaji, A., Santos, J.F., 2018. Petrogenesis of Rabor-Lalehzar magmatic rocks (SE Iran): Constraints from whole rock chemistry and Sr-Nd isotopes. Chemie der Erde 78, 58–77.
Chiaradia, M., Fontbote, L., Beate, B., 2004. Cenozoic continental arc magmatism and associated mineralization in Ecuador. Mineralium Deposita 39, 204–222.
Chiaradia, M., Muntener, O., Beate, B., Fontignie, D., 2009. Adakite–like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contributions to Mineralogy and Petrology 158, 563–588.
Chung, S.L., Liu, D.Y., Ji, J.Q., Chu, M.F., Lee, H.Y., Wen, D.J., Lo, C.H., Lee, T.Y., Qian, Q., Zhang, Q., 2003. Adakites from continental collision zones: Meltingthe of thickened lower crust beneath southern Tibet. Geology 31, 1021–1024.
Coldwell, B., Clemens, J., Petford, N., 2011.Deep crustal melting in the Peruvian Andes: felsic magma generation during delamination and uplift Lithos 125, 272-286.
Corfu, F., Noble, S.R., 1992. Genesis of the southern Abitibi greenstone belt, Superior Province, Canada: Evidence from zircon Hf isotope analyses using a single filament technique. Geochimica Cosmochimica Acta 56, 2081-2097.
Dargahi, S., Arvin, M., Pan, Y., & Babaei, A., 2010. Petrogenesis of post-collisional a-type granitoids from the Urumieh-Dokhtar magmatic assemblage, southwestern Kerman, Iran: Constraints on the Arabian-Eurasian continental collision. Lithos 115(1-4), 190–204.
Davies, J.H., Blanckenburg, V.F., 1995. Slab break off: a modal of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters 129, 85-102.
Defant, J., Drummond, S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 374, 662-665.
Defant, M. J., Drummond, M. S., 1993. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21(6), 547–550.
Defant, M.J., Jackson, T.E., Drummond, M.S., De Boer, J.Z., Bellon, H., Feigenson, M.D., Maury, R.C., Stewart, R.H., 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. Journal Geological Society London 149, 569–579.
Defant, M.J., Kepezhinskas, P., 2001. Evidence suggests slab melting in arc magmas. EOS Trans., 20, Am. Geophys. Union, Washington, DC, 82, 67-69.
Defant, M.J., Kepezhinskas, P., Defant, M.J., Xu, J.F., Kepezhinskas, P., Wang, Q., Zhang, Q., Xiao, L., 2002. Adakites: some variations on a theme. Acta Petrologica Sinica 18, 129-142.
Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of the young subducted lithosphere: Nature 347, 662–665.
Dehghani, G.A., Makris, T., 1983. The gravity field and crustal structure of Iran. Geological Survey of Iran Report 51, 51–68.
Dehghani, G. A., Makris, T., 1984. The gravity field and crustal structure of Iran. Neues Jahrbuch fur Geologie und Palaontologie-Abhandlun-gen 168 (2-3), 215-229.
Delavari, M., Amini, S., Schmitt, A.K., McKeegan, K.D., Harrison, T.M., 2014. U–Pb geochronology and geochemistry of Bibi-Maryam pluton, eastern Iran: implication for the late stage of the tectonic evolution of the Sistan Ocean. Lithos 200, 197-211.
Dercourt, J., Zonenshain, L., Ricou, L.E., et al., 1986. Geologic evolution of the Tethys belt from the Atlantic to Pamirs since the Lias. Tectonophysics 123, 241–315.
Dimitrijevic, M.D., 1973. Geology of the Kerman region. Geological Survey of Iran Report 52, 334 p.
Dhuime, B., Hawkesworth, C., Cawood, P., Storey, C., 2012. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334-1336.
Dilek, Y., Imamverdiyev, N., Altunkaynak, Ş., 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision induced mantle dynamics and its magmatic fingerprint. International Geology Review 52, 536-578
Drummond, M.S., Defant, M.J., Kepezhinskas, P.K., 1996. Petrogenesis of slab derived trondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences 87 (1-2), 205-215.
Eyuboglu, Y., Santosh, M., Yi, K., Bektas, O., Kwon, S., 2012. Discovery of Miocene adakitic dacite from the Eastern Pontides belt and revised geodynamic model for the late Cenozoic evolution of the eastern Mediterranean region. Lithos 146–147, 218–232.
Fang, H., Sheng, H.F., 2010. Partial melting of the dry mafic continental crust: Implications for petrogenesis of C-type adakites. Geochemistry 55: 1-12.
Ferry, J., Watson, E., 2007. New thermodynamic models and revised calibrations for the Ti-inzircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology 154, 429–437.
Gao, S., Rudnick, R.L., Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Ling, W.L., Ayers, J., Wang, X.C., Wang, Q.H., 2004. Recycling lower continental crust in the North China craton. Nature 432, 892–897.
Gao, Y.F., Yang, Z.S., Hou, Z.Q., Wei, R.H., Meng, X.J., Tian, S.H., 2010. Eocene potassic and ultrapotassic volcanism in south Tibet: new constraints on mantle source characteristics and geodynamic processes. Lithos 117, 20-32.
Ghadami, G., Shahre Babaki, A.M., Mortazavi , M., 2008. Post-Collisional Plio-Pleistocene Adakitic Volcanism in Centeral Iranian Volcanic Belt:Geochemical and Geodynamic Implications. Journal of Sciences, Islamic Republic of Iran 19(3): 223-235
Ghadami, G. R., Nazarinia, A., 2021. Adakite signature of granitoids in the northwest of Shahr-e- Babak, Kerman, Iran: constrains on geochemistry. Journal of Mineralogy and Geochemistry 197 (3), 263-283.
Ghadami, G.R., Shahre Babaki, A.M., Mortazavi, M., 2008. Post-collisional Plio-Pleistocene adakitic volcanism in Central Iranian volcanic belt: geochemical and geodynamic implications. Journal of Science, Islamic Republic of Iran 19(3), 223-235.
Ghaderi, M., Kouhestani, H., Emami, M.H., Meffre, S., Kamenetsky, V., Mcphie, J., khin Zaw, K., Nasiri bezenjani, R., 2017. Geochemical and Sr-Nd Isotope Composition of Late Miocene Volcanic Rocks Associated with the Chah Zard Epithermal Gold–Silver Deposit, SW Yazd, Iran. Conference: Asia Oceania Geosciences Society, 14th Annual Meeting, At Singapore.
Ghorbani, M.R. and Bezenjani, R.N., 2011. Slab partial melts from the metasomatizing agent to adakite, Tafresh Eocene volcanic rocks, Iran. Island Arc 20(2), 188–202.
Ghorbania, M.R., Grahamb, I.T., Ghader, M., 2014. Oligocene–Miocene geodynamic evolution of the central part of Urumieh-Dokhtar Arc of Iran. International Geology Review 56(8), 1039-1050.
Ghorashizadeh, M., 1978. Development of Hypogene and Supergene Alteration and Copper Mineralization Patterns, Sarcheshmeh Porphyry Copper Deposit, Iran. Unpublished M.Sc. thesis. Brock University, Ontario, Canada, 223 p.
Griffin, W.L., Graham, S., O’Reilly, S.Y., Pearson, N.J., 2004. Lithosphere evolution beneath the Kaapvaal Craton: Re–Os systematics of sulfides in mantle-derived peridotites. Geochemistry Geology, 208, 89–118.
Grove, T. L., Elkins-Tanton, L. T., Parman, S. W., Chatterjee, N., Mu¨ ntener, O., Gaetani, G. A. 2003. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contributions to Mineralogy and Petrology 145, 515-533.
Grove, T. L., Till, C. B., Krawczynski, M. J. 2012. The role of H2O in subduction zone magmatism. Annual Review of Earth and Planetary Sciences 40, 413–439.
Goss, A.R., Kay, S.M., 2006. Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: evidence for forearc subduction erosion? Geochemistry Geophysics Geosyst. 7, 5-16.
Guan, Q., Zhu, D.C., Zhao, Z.D., Dong, G.C., Zhang, L.L., Li, W.X., Liu, M., Mo, X.X., Liu, Y.S.,Yuan, H.L., 2012. Crustal thickening before 38 Ma in southern Tibet: evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research 21, 88–99
Guo, F., Nakamuru, E., Fan, W., Kobayoshi, K., Li, C., 2007. Generation of Paleocene adakitic andesites by magma mixing; Yanji Area, NE China. Journal of Petrology 48, 661–692.
Guo, J. O., Reilly, S.Y., Griffin, W.L., 1996. Zircon inclusions in corundum megacrysts: I. Trace element geochemistry and clues to the origin of corundum megacrysts in alkali basalts. Geochimica et Cosmochimica Acta 60, 2347-2363.
Guo, Z.F., Wilson, M., Liu, J.Q., 2007. Post-collisional adakites in south Tibet: products of partial melting of subduction-modified lower crust. Lithos 96, 205–224.
Gutscher, M.A., Maury, R., Eissen, J.P., et al., 2000. Can slab melting be caused by flat subduction. Geology 28, 535–538.
Haschke, M.R., Gunther, A., 2003. Balancing crustal thickening in arcs by tectonic versus magmatic means. Geology 31, 933–936.
Hoskin, P.W.O., Schaltegger, U., 2003 The composition of zircon and igneous and metamorphic petrogenesis: Reviews in Mineralogy and Geochemistry 53(1): 27–62.
Hassanzadeh, J., 1993. Metallogenic and Tectonomagmatic Events in the SE Sector of the Cenozoic Active Continental Margin of Iran (Shahr-e-Babak area, Kerman Province). Unpublished Ph.D thesis, University of California, Los Angeles, 204 pp.
Hastie A. R., Kerr, A.C., Pearce, J.A., Mitchell, S., 2007. Classifcation of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. Journal of Petrology 48(12), 2341–2357.
Harrison, T.M, Blichert-Toft, J., Muller, W., Albarede, F., Holden, P., Mojzsi, S.J., 2005. Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310, 1-10.
Hatzfeld, D., Molnar, P., 2010. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Review of Geophysics 48, 1–48.
Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P., Kemp, A.I.S., Storey, C.D., 2010. The generation and evolution of the continental crust. Journal of the Geological Society of London 167, 229-248, 47-1950.
He, Y., Li, S., Hoefs, J., Huang, F., Liu, S.A., Hou, Z., 2011. Post-collisional granitoids from the Dabie orogene: new evidence for partial melting of a thickened continental crust. Geochimica et Cosmochimica Acta 75 (13), 3815-3838.
Hou, Z.Q., Gao, Y.F., Meng, X.L., Qu, X.M., Huang, M., 2004. Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen. Acta Petrologica Sinica 20, 239–248.
Hou, Z.Q., Gao, Y.F., Qu, X.M., Rui, Z.Y., Mo, X.X., 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planetary Science Letter 220, 39–155.
Hou, M.-L., Jiang, Y.-H., Jiang, S.-Y., Ling, H.-F., Zhao, K.-D., 2007. Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, east China: implications for crustal thickening to delamination. Geological Magazine 144(4), 619-631.
Huang, F., Li, S., Dong, F., He, Y., Chen, F., 2008. High-Mg adakitic rocks in the Dabie orogen, central China: implications for foundering mechanism of lower continental crust. Chemical Geology 255, 1–13.
Iizuka, T., Komiya, T., Rino, S., Maruyama, S., Hirata, T., 2010. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochim. Comsochim. Acta 74, 2450-
Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523-548.
Jamali, H., Mehrabi, B., 2015. Relationships between arc maturity and Cu–Mo–Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran magmatic belt. Ore Geology Reviews 65, 481–501.
Jamshidi, D., Ghasemi, H., Miao, L.C., Sadeghian, M., 2018. Adakite magmatism within the Sabzevar ophiolite zone, NE Iran: U-Pb geochronology and Sr-Nd isotopic evidences. Geopersia 8, 111–30.
Jiang, J.H, Wang, R.J, Qu, X.M., Xin, H.B, Wang, Z.Z., 2011. Crustal extension of the Bangong Lake Arc Zone, Western Tibetan Plateau, after the closure of the Tethys Oceanic Basin. Earth Science 36(6),1021–1032 (in Chinese with English abstract).
Johnson, K., Barnes, C.G., Miller, C.A., 1997. Petrology, geochemistry and genesis of high- Al tonalite and trondhjemites of the Cornucopie stock, Blue Mountains, northwestern Orogen. Journal of Petrology 38, 1585-1611.
Johnston, A.D., 1986. Anhydrous P-T phase relations of near-primary high-alumina basalt from the South Sandwich Islands: implications for the origin of island arcs and tonalite-trondhjemite. Contrib Mineral Petrology 92:368–382.
Qian, Q., and Hermann, J., 2013. Partial melting of lower crust at 10–15 kbar: Constraints on adakite and TTG formation: Contributions to Mineralogy and Petrology, v. 165, no. 6, p. 1195–1224. doi:10.1007/s00410-013-0854-9.
Kamei A, Miyake Y, Owada, M., Kimura, J.I., 2009. A pseudo adakite derived from partial melting of tonalitic to granodioritic crust, Kyushu, southwest Japan arc. Lithos 112, 615–625.
Karsli, O., Dokuz, A., Kandemir, R., Aydin, F., Schmitt, A.K., Ersoy, E.Y., Alyıldız, C., 2019. Adakite-like parental melt generation by partial fusion of juvenile lower crust, Sakarya Zone, NE Turkey: a far-field response to break-off of the southern Neotethyan oceanic lithosphere. Lithos 338, 58–72.
Kamvong, T., Zaw, K., Meffre, S., Maas, R., Stein, H., Lai Ch, K., 2014. Adakites in the Truong Son and Loei fold belts, Thailand and Laos: genesis and implications for geodynamics and metallogeny. Gondwana Research 26, 165–184.
Karsli, O., Dokuz, A., Uysal, I., Aydin, F., Kandemir, R., Wijbrans, J., 2010. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos 114, 109–120.
Kay, R.W. 1987. Aleutian magnesian andesite: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research 4, 117-132.
Kay, R.W., Kay, S.M. 2002. Andean adakites three ways to make them. Acta Petrologica Sinica 18, 303-311.
Keskin, M., 2003. Magma generation by slab steepening and breakoff beneath a subduction accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letter 30, 8046.
Keskin M., Pearce J. A., Kempton P. D., Greenwood P., 2006. Magma-crust interactions and magma plumbing in a postcollisional setting: geochemical evidence from the Erzurum-Kars volcanic plateau, eastern Turkey. Geological Society of America, Special Paper, 409-475. Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., Kinny, P., 2006. Episodic growth of the Gondwana Supercontinent from hafnium and oxygen isotopes in zircon. Nature 439, 580-58.
Kirkham, R. V., Dunne, K. P., (2000). World distribution of porphyry, porphyry-associated skarn, and bulk-tonnage epithermal deposits and occurrences. Geology Survey of Canada, Open File, 3792a, 2000.
Kheirkhah, M., Allen, M.B., Emami, M., 2009. Quaternary syn-collision magmatism from the Iran/Turkey borderlands. Journal of Volcanology and Geothermal Research 182, 1–12.
Kheirkhah, M., Neill, I., Allen, M. B., Emami, M. H., Shahraki Ghadimi, A., 2020. Distinct sources for high-K and adakitic magmatism in SE Iran. Journal of Asian Earth Sciences 196, 104 -355.
LaFlèche, M.R., Camire, G., Jenner, G.A., 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes basin, Magdalen islands, Quebec, Canada. Chemical Geology 148, 115–136.
Lechmann, A., Burg, J.P., Ulmer, P., Guillong, M., Faridi, M., 2017. Metasomatized mantle as the source of Mid-Miocene-Quaternary volcanism in NW-Iranian Azerbaijan: Geochronological and geochemical evidence Lithos, 304–307, 311-328.
Ling, M.X., Li, Y., Ding, X., Teng, F.Z., Yang, X.Y., Fan, W.M., Xu, Y.G., Sun, W., 2013.
Destruction of the North China Craton induced by ridge subductions. Journal of Geology 121, 197–213.
Ling, M.X., Wang, F.Y., Ding, X., Zhou, J.B., Sun, W.D., 2011. Different origins of adakites from the Dabie Mountains and the Lower Yangtze River Belt, eastern China: geochemical constraints.
International Geology Review 53,727–740.
Liu, S.A., Li, S., He, Y., Huang, F., 2010. Geochemical contrasts between early Cretaceous orebearing and ore-barren high-Mg adakites in central-eastern China: implications for petrogenesis and Cu–Au mineralization. Geochemical Cosmochim Acta 74, 7160–7178.
Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letter 243, 581–593.
Martin, H., 1993. The mechanism of petrogenesis of the Archean continental crust, comparison with modern processes. Lithos 30, 373-388.
Martin, H., 1999. The adakitic magmas: modern analogues of Archaean granitoids. Lithos 46 (3), 411-429.
Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., 2004. An overview of adakite tonalitetrondhjemite-granodiorite (TTG), an Sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1-24.
Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., Champion, D., 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1–24.
Mazhari, S.A. 2016. Petrogenesis of adakite and high-Nb basalt association in the SW of Sabzevar Zone, NE of Iran: evidence for slab melt-mantle interaction. Journal of African Earth Science 116, 170–181.
McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chemical Geology 120, 223– 253.
McInnes, B. I. A., Evans, N. J., Fu, F. Q., & Garwin, S. (2005). Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry 58(1), 467–498.
McQuarrie, N., Van Hinsbergen, D.J.J., 2013. Retrodeforming the Arabia–Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41, 315–318.
Moghadam, H. S., Li, Q. L., Griffin, W. L., Stern, R. J., Santos, J. F., Ducea, M. N., Ottley, Ch.J, Karsli, O., Sepidbar, F., O'Reilly, S. Y., 2022. Temporal changes in subduction-to collision-related magmatism in the Neotethyan orogen: The Southeast Iran example. Earth-Science Reviews 226, 103930.
Mo, X.X., Hou, Z.Q., Niu, Y.L., Dong, G.C., Qu, X.M., Zhao, Z.D., Yang, Z.M., 2007. Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96, 225–242.
Molinaro, M., Zeyen, H., Laurencin, X., 2005. Lithospheric structure beneath the southeastern
Zagros Mountains, Iran: recent slab break-off? Terra. Nova 17, 1–6.
Moyen, J.F., 2009. High Sr/Y and La/Yb ratios: the meaning of the adakitic signature. Lithos 112, 556-547.
Muir, R.J., Weaver, S.D., Bradshaw, J.D., Eby, G.N., Evans, J.A., 1995. Geochemistry of the Cretaceous separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. Journal of Geological Society 152, 689-701.
Muntener, O., Kelemen, P.B., Grove, T.L., 2001. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contributions to Mineralogy and Petrology 141, 643–658.
Muir, R. J., Weaver, S. D., Bradshaw, J. D., Eby, G. N., & Evans, J. A. (1995). The Cretaceous Separation Point batholith, New Zealand: Granitoid magmas formed by melting of mafic lithosphere. Journal of the Geological Society, 152(4), 689–701.
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., Jolivet, L., 2008. Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106, 380–398.
O’Neill, H.S.C., Palme, H., 1998. Composition of the silicate Earth: Implications for accretion and core formation. In: Jackson, I. (Ed.), The Earth’s Mantle: Structure, Composition, and Evolution—The Ringwood Volume. Cambridge University Press, Cambridge, 1, 3–126.
Oyarzún, R., Márquez, A., Lillo, J., López, I., Rivera, S., 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism. Mineralium Deposita 36, 794–798.
Pang, K.N., Chung, S.L., Zarrinkoub, M.H., et al., 2016. New age and geochemical constraints on the origin of Quaternary adakite-like lavas in the Arabia-Eurasia collision zone. Lithos 264, 348– 359.
Patchett, P.J., 1983. Importance of the Lu-Hf isotope system in studies of planetary chronology and chemical evolution. Geochimica et Cosmochimica Acta 47, 81-91.
Pearce, J.A., Harris, N.B., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–983.
Petford, N., Atherton, M., 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. Journal of Petrology 37, 1491–1521.
Pirmohammadi Alishah, F., 2022. Genesis and geochemical evolution of the Mio-Pliocene volcanic rocks in the SW of Bostanabad, NW Iran: A comparison with the classic Adakite. Iranian Journal of Earth Sciences, 15(2), 106-120.
Prelevic, D., Akal, C., Foley, S. F., Romer, R. L., Stracke, A., Van Den Bogaard, P., 2012. Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of Southwestern Anatolia, Turkey. Journal of Petrology 53, 1019–1055.
Qian, Q., Hermann, J., 2013. Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation. Contribution of Mineralogy and Petrology 165, 1195–1224.
Rapp, R.P., Shimizu, N., Norma, M.D., et al., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology 160, 335– 356.
Rapp, R.P., Watson, E.B., 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology 36, 891–931.
Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precambrian Research 51, 1-25.
Rapp, R.P., Shimizu, N., Norman, M., Applegate, G.S., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology 160, 335–56.
Razique, A., Lo Grasso, G., & Livesey, T. (2007). Porphyry copper–gold deposits at Reko Diq complex, Chagai Hills Pakistan. Proceedings of Ninth Biennial SGA Meeting. Dublin.
Richards, J.P., Boyce, A.J., Pringle, M.S., 2001. Geological evolution of the Escondida area, northern Chile: a model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology 96, 271–305.
Richards, J.R., 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 37 (3), 247–250.
Richards, J.R., Kerrich, R., 2007. Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology 102, 537–576.
Robin, C., Eissen, J.P., Samaniego, P., Martin, H., Hall, M., Cotten, J., 2009. Evolution of the late Pleistocene Mojanda–Fuya Fuya volcanic complex (Ecuador), by progressive adakitic involvement in mantle magma sources. Bulletin of Volcanology 71 (3), 233–258.
Rossetti, F., Nasrabady, M., Theye, T., Gerdes, A., Monie, P., Lucci, F., Vignaroli, G., 2014. Adakite differentiation and emplacement in a subduction channel: the late Paleocene Sabzvar magmatism (NE Iran). Geological Society of America Bulletin 126, 317-343.
Rudnick, R.L., Gao, S., 2014. Composition of the continental crust. In: Treatise on Geochemistry 3, 1-64.
Sayari, M., Sharifi, M., 2021. Evolution of the volcanic mechanism in the central part of the Urumieh-Dokhtar magmatic arc. Journal of Economic Geology 13 (1), 113-144.
Schaltegger, U., Fanning, C.M., Gunther, D., Maurin, J.C., Schulmann, K., Gebauer, D., 1999. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology 134, 186-201.
Schulz, B., 1995. Geochemistry and REE magmatic fractionation patterns in the Prijakt amphibolitized eclogites of the Schobergruppe, Austroalpine basement (Eastern Alps). Swiss Bulletin of Mineralogy and Petrology 75, 225– 239.
Şengör, A., Özeren, S., Genç, T., Zor, E., 2003. East Anatolian high plateau as a mantle supported, north-south shortened domal structure. Geophysical Research Letters 30, 1-24.
Sepidbara, F., Aob , S., Palinc , R.M., Lib, Q.L., Zhangd, Z., (2018). Origin, age and petrogenesis of barren (low-grade) granitoids from the Bezenjan-Bardsir magmatic complex, southeast of the Urumieh-Dokhtar magmatic belt, Iran. Ore Geology Reviews.
Shafaii Moghadam, H., Rosseti, F., Lucci, F., Chiaradia, M., Gerdes, A., Martinez Lopez, M., Ghorbani Gh, Nasarabady, M., 2016. The calc–alkaline and adakitic volcanism of the Sabzevar structural zone (NE Iran): Implications for the Eocene magmatic flare–up in Central Iran. Lithos 248-251, 517–535.
Shaker Aedakani, A., 2016. Post-collisional Plio-Pleistocene Anar-Dehaj adakitic subvolcanic cones in the central volcanic belt of Iran: geochemical characteristics and tectonic implications. Periodico di Mineralogica 85, 185-200.
Sen C., Dunn T., 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contributions to Mineralogy and Petrology 117, 394409.
Simmonds V., 2013. Geochemistry and petrogenesis of an adakitic quartz-monzonitic porphyry stock and related cross-cutting dike suites, Kighal, northwest Iran. International Geology Review 55, 1126-1144.
Stevenson, R.K., Patchett, P.J., 1990. Implications for the evolution of continental crust from Hf isotope systematics of Archean detrital zircons. Gochimica et Cosmochimica Acta 54, 1683-1697. Streck, M.J., Leeman, W.P., Chesley, J., 2007. High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35, 351-354. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalts:
Implication for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatic in Oceanic Basins, Geological Society London Special Publications 42, 313–345.
Stern, C. R., Kilian, R., 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3), 263–28
Sun, W., Zhang, H., Ling, M.X., Ding, X., Chung, S.L., Zhou, J., Yang, X.Y., Fan, W., 2011. The genetic association of adakites and Cu–Au ore deposits. International Geology Review 53, 691–
Sun, W.-D., Ling, M.-X., Chung, S.-L., Ding, X., Yang, X.-Y., Liang, H.-Y., Fan, W.-M., Goldfarb, R., Yin, Q.-Z., 2012. Geochemical constraints on adakites of different origins and copper mineralization. Journal of Geology 120, 105-120.
Sun X., Lu, Y.J., McCuaig, T.C., Zheng, Y-Y., Chang, H.F., Guo, F., Li-Juan Xu, L., 2018. Miocene Ultrapotassic, High-Mg Dioritic, and Adakite-like Rocks from Zhunuo in Southern Tibet: Implications for Mantle Metasomatism and Porphyry Copper Mineralization in Collision. Article in Journal of Petrology, 59(3): 341-386.
Topuz, G., Altherr, R., Schwarz, W. H., Siebel, W., Satır, M., & Dokuz, A., 2005. Post-collisional plutonism with adakite-like signatures: the Eocene Saraycık granodiorite (Eastern Pontides, Turkey). Contributions to mineralogy and petrology, 150(4), 441-455
Tunini, L., Jimenez-Munt, I., Fernandez, M., Verges, J., Villasenor, A., 2015. Lithospheric mantle heterogeneities beneath the Zagros mountains and the Iranian plateau: a petrological- geophysical study. Geophysical Journal International 200, 596–614.
Verdel, C., Wernicke, B.P., Hassanzadeh, J., et al., 2011. A Paleogene extensional arc flare-up in
Iran. Tectonics 30, 1–20.
Vervoort, J.D., Patchett, P.J., 1996. Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica. Acta 60(19), 3717-3733.
Wang, Q., Wyman, D.A., Zhu, T., Feng, X., Zhang, Q., Zi, F., Chu, Z., 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth Planetary Science Letter 272, 158–171.
Wang, Q., Wyman, D.A., Xu, J., Jian, P., Zhao, Z., Li, C., Xu, W., Ma, J., He, B., 2007. Early Cretaceous adakitic granites in the Northern Dabie complex, Central China: implications for partial melting and delamination of the thickened lower crust. Geochimica et Cosmochimica Acta 71, 2609– 2636.
Wang, Q., Xu, J.F., Jian P., Bao Z.W., Zhao Z.H., Li, C.F., Xiong, X.L., Ma, J.L., 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of Porphyry Copper Mineralization. Journal of Petrology 47, 119-144.
Wang, Q., Xu, J.F., Zhao, Z.H., Bao, Z.W., Xu, W., Xiong, X.I., 2004. Cretaceous high potassium intrusive rocks in the Yueshan-Hongzhen area of east China: adakites in an extensional tectonic regime within a continent. Chemical Geology 38, 417-434.
Wang, Q., McDermott, F., Xu, J.-f., Bellon, H., & Zhu, Y.-t., 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology, 33(6), 465-468.
Wang, Q., Zhao, Z.H., Xu, J.F., Wyman, D., Xiong, X., Zi, F., and Bai, Z., 2006, Carboniferous adakite-high-Mg andesite-Nb enriched basaltic rock suites in the northern Tianshan area: Implications for phanerozoic crustal growth in the central asia orogenic belt and Cu-Au mineralization: Acta Petrologica Sinica, v. 22, no. 1, p. 11–30.
Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rocks-forming minerals. Am.
Mineral. 95, 185-187.
Winchester, J. A., Floyd, P. A., 1977. Geochemical discrimination of immobile elements.
Chemical Geology 20, 325-343
Xu, H.J., Ma, C.Q., Ye, K., 2007. Early Cretaceous granitoids and their implications for the collapse of the Dabie orogeny, eastern China: SHRIMP zircon U-Pb dating geochemistry. Chemical Geology 240 (3-4), 238-259.
Xu, J.F., Shinjo, R., Defant, M.J., Wang, Q., Rapp, R.P., 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology 30, 12, 1111–1114.
Xu, J.F., Wu, J.B., Wang, Q., Chen, J.L., and Cao, K., 2014. Research advances of adakites and adakitic rocks in China. Bulletin of Mineralogy Petrology & Geochemistry 33, 6–13.
Xu, Y. G., Wu, X. Y., Luo, Z. Y., Ma, J. L., Huang, X. L., Xie, L. W., 2007. Zircon HF Isotope compositions of middle Jurassic-early Cretaceous intrusions in Shandong province and its implications. Acta Petrologica Sinica, 23, 2, 307–316.
Yang, W.G., Zhong, Y., Zhu, L.D., Xie, L., Mai, Y. M., Li, N., Zhou, Y., Zhang, H.L., Xia Tong, X., Feng, W.N. 2022. The Early Cretaceous tectonic evolution of the Neo-Tethys: constraints from zircon U–Pb geochronology and geochemistry of the Liuqiong adakite, Gongga, Tibet. Geological Magazine. 159(10):1-16
Yogodzinski, G.M., Kay, R.W., Volynets, O.N., Koloskov, A.V., Kay, S.M., 1995. Magnesian andesite in the west Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geological Society of America Bulletin 107, 505–519.
Yogodzinski, G.M., Kelemen, P.B., 1998. Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth and Planetary Science Letters. 158, 53–65.
Zhang, H.F., Sun, M., Zhou, X.H., 2002. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major- and trace-elements and Sr- Nd-Pb isotope studies of Fangcheng basalts. Contribution of Mineralogy and Petrology 144, 241–253.
Zhang, L, Shicho, L, Qingying, Z., 2019. A review of research of adakites. International Geology Review 63, 47-64.
Zhang, L., Hu, Y., Liang, J., 2017. Adakitic rocks associated with the Shilu copper molybdenum deposit in the Yangchun Basin, south China, and their tectonic implications. Acta Geochimica 36, 132–150.
Zhang, L., Li, S.H., Zhao, Q., 2019. A review of research on adakites. International Geology Review. DOI: 10.1080/00206814.2019.1702592.
Zhang, Q., Jin, W.J., Li, C.D., Wang, Y.L., 2010. Revisiting the new classification of granitic rocks based on whole-rock Sr and Yb contents: index. Acta Petrologica Sinica 26, 985-1015.
Zhang, Q., Wang, Y., Qian, Q., Yang, J.H., Wang, Y.L., 2001. The characteristics and tectonicmetallogenic significances of the adakites in Yanshan period from eastern China. Acta Petrologica Sinica 17, 236–244.
Zhang, Q., Zhai, M.G., 2012. What is the Archean TTG? Acta Petrologica Sinica 28, 3446-3456.
Zheng, B., Yi-Gang, Xu, A., William, L., Griffin, C., Zhang, R.S., 2015. Are continental “adakites” derived from thickened or foundered lower crust? Earth and Planetary Science Letters 419, 125133.
Zhu, D. C., Zhao, Z.D., Pan, G.T., Lee, H.Y., Kang, Z.Q., Liao Z. L., Wang, L.Q., Li, G.M., Dong, G.C., Liu, B., 2009. Early Cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt-peridotite interaction?. Journal of Asian Earth Sciences 34, 298-309.
Zor, E., 2008. Tomographic evidence of slab detachment beneath eastern Turkey and the Caucasus. Geophysical Journal International 175, 73–1282.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
Geologica Acta is the property of the UB, GEO3BCN, IDAEA and UAB. Geologica Acta must be cited for any partial or full reproduction. Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows anyone to reproduce and disseminate the content of the journal and even make derivative works crediting authorship and provenance and distributing possible derivative works under the same or an equivalent license.
Author Rights
Authors retain the copyright on their papers and are authorized to post them on their own web pages or institutional repositories. The copyright was retained by the journal from the year 2003 until 2009. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission from Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.