Analysis of the iron coatings formed during marcasite and arsenopyrite oxidation at neutral-alkaline conditions
DOI:
https://doi.org/10.1344/105.000002062Keywords:
Sulphide oxidation. Iron phases. Arsenopyrite. Marcasite. Neutral-basic pH.Abstract
In order to study the nature of the precipitates formed on arsenopyrite and marcasite after reacting with neutral to alkaline solutions, a combination of techniques including Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS), X-ray Photoelectron Spectroscopy (XPS) and synchrotron-based techniques such as micro-X-Ray diffraction (μXRD) and Micro-X-ray Absorption Near Edge Structure (μXANES) have been used. The results showed that the oxidation of marcasite and arsenopyrite under neutral to alkaline conditions leads to the formation of an Fe rich coating which seems to prevent the oxidation of these sulphides. SEM observations confirmed the presence newly-formed phases after the sulphides reaction under the studied conditions. XPS analysis showed that iron, sulphur and arsenic in the case of the arsenopyrite are in oxidized states in the sulphide surfaces. The microscale analysis of the S and Fe speciation performed by μXANES suggested that due to the sulphide oxidation an increase in the oxidation state of those elements took place together with an increase of the sulphate content in the surface layer (grain boundary). Micro-X-ray diffraction results indicated that goethite (α-FeOOH) is the only crystalline newly-formed phase when the reaction occurs at pH 12 whereas at lower pH the products formed on the sulphide surfaces seem to be poorly crystalline and they do not contribute to the diffraction effects in the XRD diagrams.
References
Acero, P., Cama, J., Ayora, C., Asta, M.P., 2009. Chalcopyrite dissolution rate law from pH 1 to 3. Geologica Acta, 7(3), 389-397.
Allison, J.D., Brown, D.S., Novo-Gradac, K.J. 1990. MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3.0. Office of Research and Development, US Environmental Protection Agency, Athens (USA).
Asta, M.P., Cama, J., Soler, J.M., Arvidson, R.S., Lütge, A., 2008. Interferometric study of pyrite surface reactivity in acidic conditions. American Mineralogist, 93, 508-519.
Asta, M.P., Cama, J., Acero, P., 2010a. Dissolution kinetics of marcasite at acidic pH. European Journal of Mineralogy, 22, 49-61.
Asta, M.P., Cama, J., Ayora, C., Acero, P., de Giudici, G., 2010b. Arsenopyrite dissolution rates in O2-bearing solutions. Chemical Geology, 273, 272-285.
Ball, J.W., Nordstrom, D.K., 2001. User’s manual for WATEQ4F with revised thermodynamic database and test cases for calculating speciation of major, trace and redox elements in natural waters (Revised and reprinted, April, 2001). U.S. Geological Survey Water-Resources Investigation Report, 91-183, 188pp.
Belzile, N., Chen, Y.W., Cai, M.F., Li, Y., 2004. A review on pyrrhotite oxidation. Journal of Geochemical Exploration, 84, 65-76.
Beattie, M.J.V., Poling, G.W., 1987. A study of the surface oxidation of arsenopyrite using cyclic voltammetry. International Journal of Mineral Processing, 20, 87-108.
Berry, A.J., O’Neil, H.ST.C., Jayasuriya, K.D., Campbell, S.J., Foran, G.J., 2003. XANES calibrations for the oxidation state of iron in a silicate glass. American Mineralogist, 88, 963-977.
Bhakta, P., Langhans, J.W., Lei, K.P.V., 1989. Alkaline oxidative leaching of gold-bearing arsenopyrite ores. U.S. Department of Interior, Bureau of Mines, RI 9258, 16pp.
Bonnissel-Gissinger, P., Alnot, M., Ehrhardt, J.J., Behra, P., 1998. Surface oxidation of pyrite as a function of pH. Environmental Science and Technology, 32, 2839-2845.
Briggs, D., Seah M.P., 1990. Practical surface analysis. Volume 1. Auger and X-ray photoelectron spectroscopy. John Wiley and Sons, 2nd edition, 657pp.
Brion, D., 1980. Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, ZnS et PbS a l’air et dans l’eau. (Photoelectron spectroscopic study of the surface degradation of FeS2, ZnS and PbS in air and water). Applied Surface Science, 5, 133-152.
Buckley, A.N., 1987. The surface oxidation of pyrite. Applied Surface Science, 27, 347-452.
Buckley, A.N., Woods, R., 1984. An X-ray photoelectron spectroscopic study of the oxidation of chalcopyrite. Australian Journal of Chemistry, 37, 2403-2413.
Buckley, A.N., Woods, R., 1985a. X-ray photoelectron spectroscopy of oxidized pyrrothite surfaces. I Exposure to air. Applied Surface Science, 22-23, 280-287.
Buckley, A.N., Woods, R., 1985b. X-ray photoelectron spectroscopy of oxidized pyrrothite surfaces. I. Exposure to aqueous solutions. Applied Surface Science, 20, 472-480.
Buckley, A.N., Woods, R., 1987. The surface oxidation of pyrite. Applied Surface Science, 27, 437-452.
Buckley, A.N., Walker, G.W., 1988. The surface-composition of arsenopyrite exposed to oxidizing environments. Applied Surface Science, 35, 227-240.
Caldeira, C.L., Ciminelli, V.S.T., Dias, A., Osseo-Asare, K., 2003. Pyrite oxidation in alkaline solutions: nature of the product layer. International Journal of Mineral Processing, 72, 373-386.
Canavan, R., Slomp, C., Jourabchi, P., Van Cappellen, P., Laverman, A., Van den Berg, G., 2006. Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization. Geochimica et Cosmochimica Acta, 70, 2836-2855.
Cornell, R.M., Schwertmann, U., 1996. The iron oxides. New York, Wiley-VCH, 573pp.
Cotte, M., Susini, J., Metrich, N., Moscato, A., Gratziu, C., Bertagnini, A., Pagano, M., 2006. Blackening of Pompeian cinnabar paintings: X-ray microspectroscopy analysis. Analytical Chemistry, 78, 7484-7492.
Cotte, M., Susini, J., Solé, V., Taniguchi, Y., Chillida, J., Checroun, E., Walter, P., 2008. Applications of synchrotronbased micro-imaging techniques to the chemical analysis of ancient paintings. Journal of Analytical Atomic Spectrometry, 23, 820-828.
Couture, R.-M., Shafei, B., Van Cappellen, P., Tessier, A., Gobeil, C. 2010. Non-steady state modeling of arsenic diagenesis in lake sediments. Environmental Science and Technology, 44, 197-203.
Elsetinow, A.R., Strongin, D.R., Borda, M.J., Schoonen, M.A., Rosso, K.M., 2003. Characterization of the structure and the surface reactivity of a marcasite thin film. Geochimica et Cosmochimica Acta, 67, 807-812.
Evangelou, V.P., 1995. Pyrite oxidation and Its control. Boca Raton (USA), CRC Press, 285pp.
Evangelou, V.P., 1996. Pyrite oxidation inhibition in coal waste by PO4 and H2O2 pH buffered pretreatment. International Journal of Surface Mining, Reclamation and Environment, 10, 135-142.
Evangelou, V.P., 2001. Pyrite microencapsulation technologies: principles and potential field application. Ecological Engineering, 17, 165-178.
Evangelou, V.P., Seta, A.K., Holt, A., 1998. Potential role of bicarbonate during pyrite oxidation. Environmental Science and Technology, 32, 2084-2091.
Ferris, F.G., Tazaki, K., Fyfe, W.S., 1989. Iron oxides in acid mine drainage environments and their association with bacteria. Chemical Geology, 74, 321-330.
Fytas, K., Evangelou, B., 1998. Phosphate coating on pyrite to prevent acid mine drainage. International Journal of Mining, Reclamation and Environment, 12, 101-104.
Fytas, K., Evangelou, B., 1999. Application of silicate coatings on pyrite to prevent acid mine drainage. Proceedings, Mining
and the Environment II, Sudbury, Ontario, 3, 1199-1207.
Fytas, K., Bousquet, P., 2002. Silicate micro-encapsulation of pyrite to prevent acid mine drainage. The Canadian Institute of Mining, Metallurgy and Petroleum Bulletin, 95(1063), 96-99.
Johnson, D.B., Hallberg, K.B., 2005. Acid mine drainage remediation options: a review. Science of the Total Environment, 338, 3-14.
Hacquard, E., Bessiere, J., Alnot, M., Ehrhardt, J.J., 1999. Surface spectroscopic study of the adsorption of Ni(II) on pyrite and
arsenopyrite at pH 10. Surface and Interface Analysis, 27, 849-860.
Hammersley, A.P., Svensson, S.O., Han, M., Fitch, A.N., Hausermann, D., 1996. Two dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Research, 14, 235-248.
Harmer, S.L., Nesbitt, H.W., 2004. Stabilization of pyrite (FeS2),marcasite (FeS2), arsenopyrite (FeAsS) and loellingite (FeAS2) surfaces by polymerization and autoredox reactions. Surface Science, 564, 38-52.
Harvey, D.T., Linton, R.W., 1981. Chemical characterization of hydrous ferrie oxides by X-ray photoelectron spectroscopy. Analytical Chemistry, 53,1648-1688.
Hiskey, J.B., Sanchez, V.M., 1995. Alkaline pressure oxidation of a gold-bearing arsenopyrite concentrate. Mineral Processing and Extractive Metallurgy Review, 15, 61-74.
Hood, Y.A., 1991. The kinetics of pyrite oxidation in marine systems. Ph.D. Thesis. University of Miami (USA), 223pp.
Huang, X., Evangelou, V.P., 1993. Suppression of Pyrite Oxidation Rate by Phosphate Addition, Environmental Geochemistry of Sulfide Oxidation. American Chemical Society (ACS) Symposium Series, American Chemical Society, 550, 562-573.
Huffman, G.P., Mitra, S., Huggins, F.E., Shah, N., Vaidya, S., Lu, F., 1991. Quantitative analysis of all major forms of sulfur in coal by x-ray absorption fine structure spectroscopy. Energy Fuels, 5, 574-581.
Huminicki, D.M.C., Rimstidt, J.D., 2009. Iron oxyhydroxide coating of pyrite for acid mine drainage control. Applied Geochemistry, 24, 1626-1634.
Hutchison, K.J., Hesterberg, D., Chou, J.W. 2001. Stability of reduced organic sulfur in humic acid as affected by aeration and pH. Soil Science Society of America Journal, 65, 704-709.
Jurjovec, J., Ptacek, C.J., Blowes, D.W., 2002. Acid neutralization mechanisms and metal reslease in mine tailings: A laboratory column experiment. Gechimica et Cosmochimica Acta, 66, 1511-1523.
Koslides, T., Ciminelli, V.S.T., 1992. Pressure oxidation of arsenopyrite and pyrite in alkaline-solutions. Hydrometallurgy, 30, 87-106.
Lasaga, A.C., 1998. Kinetic Theory in the Earth Sciences. Princeton University Press, 728pp.
Mathews, C.T., Robins, R.G., 1972. The oxidation of ferrous disulphide by ferric sulphate. Australian Chemical Engineering, 13, 21-25.
Mathews, C.T., Robins, R.G., 1974. Oxidation of iron disulphide by molecular oxygen. Australian Chemical Engineering, 15, 19-24.
McIntyre, N.S., Zeratuk, D.G., 1977. X-ray photoelectron spectroscopic studies of iron oxides. Analytical Chemistry, 49, 1521-1529.
McKibben, M.A., Tallant, B.A., del Angel, J.K., 2008. Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions. Applied Geochemistry, 23, 121-135.
Meng, X., Letterman, R.D., 1993a. Modeling ion adsorption on aluminum hydroxide-modified silica. Environmental Science
and Technology, 27, 1924-1929.
Meng, X., Letterman, R.D., 1993b. Effect of component oxide interaction on the adsorption properties of mixed oxides. Environmental Science and Technology, 27, 970-975.
Métrich, N., Susini, J., Foy, E., Farges, F., Massare, D., Sylla, L., Lequien, S., Bonnin-Mosbah, M., 2006. Redox state of iron in peralkaline rhyolitic glass/melt: X-ray absorption microspectroscopy experiments at high temperature. Chemical Geology, 231, 350-362.
Mikhlin, Y.L., Romanchenko, A.S., Asanov, I.P., 2006. Oxidation of arsenopyrite and deposition of gold on the oxidized surfaces: A scanning probe microscopy, tunneling spectroscopy and XPS study. Geochimica Cosmochimica Acta, 70, 4874-4888.
Morra, M.J., Fendorf, S.E., Brown, P.D., 1997. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy. Gechimica et Cosmochimica Acta, 3, 683-688.
Mycroft, J.R., Bancroft, G.M., McIntyre, N.S., Lorimer, J.W., Hill, I.R., 1990. Detection of Sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-ray photoelectron-spectroscopy and Raman spectroscopy. Journal of Electroanalytical Chemistry, 292, 139-152.
Mylona, E., Xenidis, A., Paspaliaris, I., 2000. Inhibition of acid generation from sulphidic wastes by the addition of small amounts of limestone. Minerals Engineering, 13, 1161-1175.
Nesbitt, H.W., Muir, I.J., 1994. X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water-vapor and air. Geochimica et Cosmochimica Acta, 58, 4667-4679.
Nesbitt, H.W., Muir, I.J., 1998. Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air. Mineralogy and Petrology, 62, 123-144.
Nesbitt, H.W., Muir, I.J., Pratt, A.R., 1995. Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation. Geochimica et Cosmochimica Acta, 59, 1773-1786.
Nicholson, R.V., Gilham, R.V., Reardon, E.J., 1988. Pyrite oxidation in carbonate-buffered solutions 1: experimental kinetics. Geochimica et Cosmochimica Acta, 52, 1077-1085.
Nicholson, R.V., Gilham, R.V., Reardon, E.J., 1990. Pyrite oxidation in carbonate-buffered solutions: 2. rate control by oxide coatings. Geochimica et Cosmochimica Acta, 54, 395-402.
Nordstrom, D.K., Alpers, C.N., 1999. Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. United States of America, Proceedings of the National Academy of Sciences, 96, 3455-3462.
Nyavor, K., Egiebor, N.O., 1995. Control of pyrite oxidation by phosphate coating. Science of the Total Environment, 162, 225-237.
O’Day, P.A., Rivera, N.Jr., Root, R., Carrol, S.A., 2004. X-ray absorption spectroscopic study of Fe reference compounds for the analysis of natural sediments. American Mineralogist, 89, 572-585.
Parkhurst, D.L., Appelo, C.A.J., 1999. User’s Guide to PHREEQC (Version 2), a computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. Water Resources Research, Inverstigations Report, 99-4259, 312pp.
Pérez-López, R., Cama, J., Nieto, J.M., Ayora, C., 2007. The iron-coating role on the oxidation kinetics of a pyritic sludge doped with fly ash. Geochimica et Cosmochimica Acta, 71, 1921-1934.
Pratt, A.R., Nesbitt, H.W., Muir, I.J., 1994. Generation of acids from mine waste - oxidative leaching of pyrrhotite in dilute H2SO4 solutions at pH 3.0. Geochimica et Cosmochimica Acta, 58, 5147-5159.
Pratt, A.R., McIntyre, N.S., Splinter, S.J., 1998. Deconvolution of pyrite marcasite and arsenopyrite XPS spectra using the maximum entropy method. Surface Science, 396, 266-272.
Prietzel, J., Thieme, J., Neuhäusker, U., Susini, J., KögelKnabner, I., 2003. Speciation of sulphur in soils and soil particles by X-ray spectromicroscopy. European Journal of Soil Science, 54, 423-433.
Prietzel, J., Thieme, J., Salomé, M., Knicker, H., 2007. Sulfur K-edge XANES spectroscopy reveals differences in sulfur speciation of bulk soils, humic acid, fulvic acid, and particle size separates. Soil Biology and Biochemistry, 39, 877-890.
Ravel, B., Newville, M.J., 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Synchrotron Radiation, 12, 537-541.
Richardson, S., Vaughan, D.J., 1989. Arsenopyrite - a spectroscopic investigation of altered surfaces. Mineralogical Magazine, 53, 223-229.
Rinker, M.J., Nesbitt, H.W., Pratt, A.R.,1997. Marcasite oxidation in low-temperature acidic (pH 3.0) solutions: Mechanism and rate laws. American Mineralogist, 82, 900-912.
Scheidegger, A., Borkovek, M., Sticher, H., 1993. Coating of silica sand with goethite: preparation and analytical identification. Geoderma, 58, 43-66.
Singer, P.C., Stumm, W., 1970. Acidic mine drainage: the ratelimiting step. Science, 167, 1121-1123.
Solé, V.A., Papillon, E., Cotte, M., Walter, Ph., Susino, J., 2007. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochimica Acta, Part B, Atomic Spectroscopy, 62, 63-68.
Smart, R.St.C., Amarantidis, J., Skinner, W., Prestidge, C.A., La Vanier, L., Grano, S., 1998. Surface analytical studies of oxidation and collector adsorption in sulfide mineral flotation. Scanning Microscopy, 12, 553-583.
Somogyi, A., Drakopoulos, M., Vincze, L., Vekemans, B., Camerani, C., Janssens, K., Snigirev, A., Adams, F., 2001. ID18F: a new micro- X-ray fluorescence end-station at the European Synchrotron Radiation Facility (ESRF): preliminary results. X-Ray Spectrometry, 30, 242-252.
Uhlig, I., Szargan, R., Nesbitt, H.W., Laajalehto, K., 2001. Surface states and reactivity of pyrite and marcasite. Applied Surface Science, 179, 222-229.
Vandiviere, M.M., Evangelou, V.P., 1998. Comparative testing between conventional and microencapsulation approaches in controlling pyrite oxidation. Journal of Geochemical Exploration, 64, 161-176.
Walker, F.P., Schreiber, M.E., Rimstidt, J.D., 2006. Kinetics of arsenopyrite oxidative dissolution by oxygen. Geochimica et Cosmochimica Acta, 70, 1668-1676.
Wilke, M., Farges, F., Petit, P-E, Brown Jr., G.E., Martin, F., 2001. Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopy study. American Mineralogist, 86, 714-730.
Wilke, M., Hahn, O., Woodland, A.B., Rickers, K., 2009. The oxidation state of iron determined by Fe K-edge XANES: application to iron gall ink in historical manuscripts. Journal of Analytical Atomic Spectrometry, 24, 1364-1372.
Xia, K., Wessner, F., Bleam, W., Bloom, P.R., Skyllberg, U.L., Helmke, P.A., 1998. XANES studies of oxidation states of S in soil and aquatic humic substances. Soil Science Society of America Journal, 62, 1240-1246.
Yu, Y.M., Zhu, Y.X., Gao, Z., Gammons, C.H., Li, D., 2007. Rates of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8-12.6 and 15-45 ºC. Environental Science and Technology, 41, 6460-6464.
Zhang, Y.L., Evangelou, V.P., 1998. Formation of ferric hydroxidesilica coatings on pyrite and its oxidation behaviour. Soil Science, 163, 53-62.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
Geologica Acta is the property of the UB, GEO3BCN, IDAEA and UAB. Geologica Acta must be cited for any partial or full reproduction. Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows anyone to reproduce and disseminate the content of the journal and even make derivative works crediting authorship and provenance and distributing possible derivative works under the same or an equivalent license.
Author Rights
Authors retain the copyright on their papers and are authorized to post them on their own web pages or institutional repositories. The copyright was retained by the journal from the year 2003 until 2009. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission from Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.