Depositional environment and source rock potential of Cenomanian and Turonian sedimentary rocks of the Tarfaya Basin, Southwest Morocco
DOI:
https://doi.org/10.1344/GeologicaActa2016.14.4.6Keywords:
OAE, oil shale, petroleum source rock, biomarker, organic sulfur, unstructured organic matterAbstract
Detailed organic and inorganic geochemical analyses were used to assess the depositional environment and source rock potential of the Upper Albian to Turonian oil shale deposits in the Tarfaya Basin. This study is based on core samples from the Tarfaya Sondage-4 well that penetrated over 300m of Mid Cretaceous organic matter-rich deposits. A total of 242 samples were analyzed for total organic and inorganic carbon and selected samples for total sulfur and major elements as well as for organic petrology, Rock-Eval pyrolysis, Curie-Point-pyrolysis-gas-chromatography-Mass-Spectrometry and molecular geochemistry of solvent extracts. Based on major elements the Albian and Lower Cenomanian differ from the other intervals by higher silicate and lower carbonate contents. Moreover, the molecular geochemistry suggests marine anoxic bottom water conditions during the Cenomanian-Turonian boundary event (CTBE; oceanic anoxic event 2: OAE2). As a proxy for the Sorg/Corg ratio, the ratio total thiophenes/total benzenes compounds was calculated from pyrolysate compositions. The results suggest that Sorg/Corg is low in the Albian, moderate in the Cenomanian, very high in the CTBE and high in the Turonian samples. Rock-Eval data reveal that the Albian is a moderately organic carbon-rich source rock with good potential to generate oil and gas upon thermal maturation. On the other hand, the samples from the Cenomanian to the Turonian exhibit higher organic carbon contents and can be classified as oil-prone source rocks. Based on Tmax data, all rocks are thermally immature.
The microscopic investigations suggest dominance of submicroscopic organic matter in all samples and different contents of bituminite and alginite. The Albian samples have little visible organic matter and no bituminite. The Cenomanian and CTBE samples are poor in bituminite and have rare visible organic matter, whereas the Turonian samples change from bituminite-fair to bituminite-rich and to higher percentages of visible organic matter towards the younger interval. These differences in the organic matter type are attributed to 1) early diagenetic kerogen sulfurization and 2) the upwelling depositional environment. Moreover, kerogen sulfurization was controlled by the relationship between carbonate, iron and sulfur as well as the organic matter. Thus, the organic carbon-rich deposits can be grouped into: 1) low Sorg and moderately organic matter-rich oil prone source rocks, 2) moderate Sorg and organic-carbon-rich oil prone source rocks, 3) high Sorg and organic carbon-rich oil prone source rocks and 4) very high Sorg and organic carbon-rich oil prone source rocks, the latter being represented by the CTBE. Types 2 to 4 will generate sulfur-rich petroleum upon maturation or artificial oil shale retorting.
References
Aquit, M., Kuhnt, W., Holbourn, A., Chellai, E., Stattegger, K., Kluth, O., Jabour, H., 2013. Late Cretaceous paleoenvironmental evolution of the Tarfaya Atlantic coastal Basin, SW Morocco. Cretaceous Research, 45, 288-305.
Berner, R.A., 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48, 605-615.
Berner, R.A., Raiswell, R., 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta, 47, 855-862.
Bou Daher, S., Nader, F.H., Strauss, H., Littke, R., 2014. Depositional environment and source-rock characterization of organic-matter rich upper Santonian – upper Campanian carbonates, Northern Lebanon. Journal of Petroleum Geology, 37, 5-24
Bou Daher, S., Nader, F.H., Müller, C., Littke, R., 2015. Geochemical and petrographic characterization of Campanian – Lower Maastrichtian calcareous petroleum source rocks of Hasbayya, South Lebanon. Marine and Petroleum Geology, 64, 304-323
Brooks, J.D., Gould, K., Smith, J.W., 1969. Isoprenoid hydrocarbons in coal and petroleum. Nature, 222, 257-259.
Calvert, S.E., Pedersen, T.F., 1993. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. Marine Geology, 113(1-2), 67-88.
Calvert, S.E., Bustin, R.M, Ingall, E.D., 1996. Influence of water column anoxia and sediment supply on the burial and preservation of organic carbon in marine shales. Geochimica et Cosmochimica Acta, 60(9), 1577-1593.
Canfield, D.E., 1994. Factors influencing organic carbon preservation in marine sediments. Chemical Geology, 114, 315-329.
Cranwell, P.A., Eglinton, G., Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments-II. Organic Geochemistry, 11(6), 513-527.
Creaney, S., 1980. Petrographic texture and vitrinite reflectance variation on the alston block, north-east England. Yorkshire
Geological Society, 42(4), 553-580.
Davison, I., 2005. Central Atlantic margin basins of North West Africa: Geology and hydrocarbon potential (Morocco to Guinea). Journal of African Earth Sciences, 43, 254-274.
de Leeuw J.W., Sinninghe-Damsté J.S., 1990. Organic sulphur compounds and other biomarkers as indicators of paleosalinity. In: Orr, W.L., White, C.M. (eds.). Geochemistry of Sulfur in Fossil Fuels. American Chemical Society 1st edition. 417-443.
Dean, W.E., Arthur, M.A., 1989. Iron-sulfur-carbon relationships in organic-carbon-rich sequences: I. Cretaceous Western
Interior Seaway. American Journal of Science. 289, 708-743.
Derenne, S., Largeau, C., Berkaloff, C., Rousseau, B., Wilhelm, C., Hatcher, P.G., 1992. Non-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eucaryotumm. Phytochemistry, 31, 1923-1929.
Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., Eglinton, G., 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272, 216-222.
Dyni, J.R., 2006. Geology and resources of some world oil-shale deposits. U.S. Geological Survey Scientific Investigations Report, 2005-5294, 42pp.
Einsele, G., Wiedmann, J., 1982. Turonian Black Shales in the Moroccan Coastal Basins: First Upwelling in the Atlantic Ocean? In: Von Rad, U., Hinz, K., Sarnthein, M., Seibold, E. (eds.). Geology of the Northwest African Continetal Margin. Springer Berlin Heidelberg, 396-414.
Enachescu, M.E., Hogg, J.R., Fowler, M., Brown, D.E., Atkinson, I., 2010. Late Jurassic Source Rock Super-Highway on Conjugate Margins of the North and Central Atlantic (offshore East Coast Canada, Ireland, Portugal, Spain and Morocco).
Central and North Atlantic Conjugate Margins conference, Lisbon 2010. Volume II, 49-80. ISBN: 978-989-96923-0-5
Erbacher, J., Thurow, J., Littke, R., 1996. Evolution patterns of radiolaria and organic matter variations: A new approach to identify sea-level changes in Mid-Cretaceous pelagic environments. Geology, 24, 499-502.
Espitalié, J., Deroo, G., Marquis, F., 1985. La pyrolyse Rock-Eval et ses applications. Revue de l’Institut Français du Pétrole, 40, 563-579.
Hafid, M., Tari, G., Bouhadioui, B., El Moussaid, I., Eccharfaoui, H., Aït Salem, A., Nahim, M., Dakki, M., 2008. Atlantic basins. In: Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D. (eds.). Continental evolution: The Geology of Morocco. Lecture Notes in Earth Sciences, 116, 303-329.
ten Haven, H.L., de Leeuw, J.W., Rullkötter, J., Sinninghe Damste, J.S., 1987. Restricted utility of the pristane/phytane ratio as a paleoenvironmental indicator. Nature, 330, 641-643.
Hedges, J.I., Eglinton, G., Hatcher, P.G., Kirchman, D.L., Arnosti, C., Derenne, S., Evershed, R.P., Kögel-Knabner, I., de Leeuw,
J.W., Littke, R., Michaelis, W., Rullkötter, J., 2000. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Organic Geochemistry, 31(10), 945-958.
Herbin, J.P., Montadert, L., Müller, C., Gomez, R., Thurow, J., Wiedmann, J., 1986. Organic-rich sedimentation at the Cenomanian-Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys. London, Geological Society, 21(1, Special Publications), 389-422.
Hutton, A.C., 1987. Petrographic classification of oil shales. International Journal of Coal Geology, 8, 203-231.
Jenkyns, H.C., 1980. Cretaceous anoxic events: from continents to oceans. London, Journal of Geological Society, 137, 171-188.
Jenkyns, H.C., 2010. Geochemistry of oceanic anoxic events. Geochemistry Geophysics Geosystems, 11(3), Q03004. DOI:10.1029/2009GC002788
Kolonic, S., Sinninghe Damsté, J.S., Bottcher, M.E., Kuypers, M.M.M., Kuhnt, W., Beckmann, B., Scheeder, G., Wagner, T., 2002. Geochemical Characterization of Cenomanian/Turonian Black Shales from the Tarfaya Basin (SW Morocco). Journal of Petroleum Geology, 25, 325-350.
Koopmans, M.P., Irene; W., Rijpstra, C., Klapwijk, M.M., de Leeuw, J.W., Lewan, M.D., Damsté, J.S.S., 1999. A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter. Organic Geochemistry, 30, 1089-1104.
Kraal, P., Slomp, C.P., Forster, A., Kuypers, M.M., 2010. Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during oceanic anoxic event 2. Palaeogeography, Palaeoclimatology, Palaeoecology, 295(1), 42-54.
van Krevelen, D.W., 1950. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel, 29, 269-84.
Kuhnt, W., Nederbragt, A., Leine, L., 1997. Cyclicity of Cenomanian-Turonian organic-carbon-rich sediments in the Tarfaya Atlantic Coastal Basin (Morocco). Cretaceous Research, 18, 587-601.
Kuhnt, W., Holbourn, A., Gale, A., Chellai, E.A., Kennedy, J., 2009. Cenomanian sequence stratigraphy and sea-level fluctuations in the Tarfaya Basin (SW Morocco). Geological Society America Bulletin, 121, 1695-1710.
Kuypers, M.M.M., van Breugel, Y., Schouten, S., Erba, E., Sinninghe Damsté, J.S., 2004b. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology, 32(10), 853-856.
Kuypers, M.M.M., Lourens, L.J., Rijpstra, W., Pancost, R., Nijenhuis, I.A., Sinninghe Damsté, J.S., 2004a. Orbital forcing of organic carbon burial in the proto-North Atlantic during oceanic anoxic event 2. Earth and Planetary Science Letters, 228, 465-482.
Lancelot, Y., Winterer, E.L., 1980. Evolution of the Moroccan oceanic basin and adjacent continental margin; a synthesis.
United States, Initial Reports of the Deep Sea Drilling Project 50 Publisher: Texas A & M University, Ocean Drilling Program, College Station, 801-821.
Largeau, C., Derenne, S., 1993. Relative efficiency of the selective preservation and degradation recondesation pathways in kerogen formation. Source and environment influence on their contributions to type I and II kerogens. Organic Geochemistry, 20, 611-616.
Leventhal, J.S., 1982. An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition. Geochimica et Cosmochimica Acta, 47, 133-137.
Leventhal, J.S., 1995. Carbon-sulfur plots to show diagenetic and epigenetic sulfidation in sediments. Geochimica et Cosmochimica Acta, 59, 1207-1211.
Littke, R., 1993. Deposition, Diagenesis and Weathering of Organic Matter-Rich Sediments. Lecture Notes in Earth Sciences, Berlin, Springer Verlag, 216pp.
Littke, R., Sachsenhofer, R.F., 1994. Organic petrology of deep sea sediments: a compilation of results from the Ocean Drilling Program and the Deep Sea Drilling Project. Energy and Fuels, 8, 1498-1512.
Littke, R., Baker, D.R., Leythaeuser, D., Rullkötter, J., 1991. Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hils syncline, Northern Germany. In: Tyson, R.V., Pearson, T. (eds.). Modern and ancient continental shelf anoxia. Geological Society, 58 (Special publications), 311-334.
Littke, R., Lückge, A., Welte, D.H., 1997. Quantification of organic matter degradation by microbial sulphate reduction for Quaternary sediments from the northern Arabian Sea. Naturwissenschaften, 84, 312-315.
Lüning, S., Kolonic, S., Belhadj, E.M., Belhadj, Z., Cota, L., Baric, G., Wagner, T., 2004. Integrated depositional model for the Cenomanian-Turonian organic-rich strata in North Africa. Earth-Science Reviews, 64, 51-117.
Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D. (eds.), 2008. Continental Evolution: The Geology of Morocco. Structure, Stratigraphy, and Tectonics of the Africa–Atlantic–Mediterranean Triple Junction. Lecture Notes in Earth Sciences, Berlin, Heidelberg, Springer-Verlag, 424pp.
Morabet, A.M., Bouchta, R., Jabour, H., 1998. An overview of the petroleum systems of Morocco. In: Mac-Gregor, D.S., Moody, R.T.J., Clark-Lowes, D.D. (eds.). Petroleum Geology of North Africa. London, Geological Society, 132 (Special Publications), 283-296.
Morse, J.W., Berner, R.A., 1995. What determines sedimentary C/S ratios? Geochimica et Cosmochimica Acta, 59, 1073-1077.
Mort, H., 2006. Biogeochemical changes during the CenomanianTuronian Oceanic Anoxic Event (OAE 2).Doctoral dissertation. Université de Neuchâtel.205.
Mort, H.P., Adatte, T., Föllmi, K.B., Keller, G., Steinmann, P., Matera, V., Berner, Z., Stüben, D., 2007. Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology, 35, 483-486.
Mort, H.P., Adatte, T., Keller, G., Bartels, D., Föllmi, K.B., Steinmann, P., Berner, Z., Chellai, E.H., 2008. Organic carbon deposition and phosphorus accumulation during Oceanic Anoxic Event 2 in Tarfaya, Morocco. Cretaceous Research, 29(5-6), 1008-1023. ISSN: 0195-6671
Nederbragt, A.J., Thurow, J., Vonhof, H., Brumsack, H.J., 2004. Modelling oceanic carbon and phosphorus fluxes: implications for the cause of the late Cenomanian Oceanic Anoxic Event 2 (OAE2). Journal of the Geological Society, 161, 721-728.
Neumaier, M., Back, S., Littke, R., Kukla, P.A., Schnabel, M., Reichert, C., 2015. Late Cretaceous to Cenozoic geodynamic evolution of the Atlantic margin offshore Essaouira (Morocco). Basin Research, 1-19. DOI: 10.1111/bre.12127
Ohkouchi, N., Kashiyama, Y., Kuroda, J., Ogawa, N.O., Kitazato, H., 2006. The importance of diazotrophic cyanobacteria as a
primary producers during Cretaceous Oceanic Anoxic Event 2. Biogeosciences, 3, 575-605.
Pacton, M., Fiet, N., Gorin, G., 2006. Revisiting amorphous organic matter in Kimmeridgian laminites: what is the role of the vulcanization process in the amorphization of organic matter? Terra Nova, 18, 380-387.
Pepper, A.S., Corvi, P.J., 1995. Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Marine and Petroleum Geology, 12(3), 291-319. ISSN 0264-8172
Peters, K.E., 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. American Association of
Petroleum Geologists Bulletin, 70, 318-329.
Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The Biomarker Guide, Volume 2. Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge, Cambridge University Press, 2nd edition, 1155.
Powell, T.G., 1987. Pristane/phytane ratio as environmental indicator. Nature, 333, 604.
Powell, T.G., McKirdy, D.M., 1973. Relationship between ratio of pristane to phytane, crude oil composition and geological
environment in Australia. Nature, 243, 37-39.
Raiswell, R., Berner, R.A., 1986. Pyrite and organic-matter in Phanerozoic normal marine shales. Geochimica et Cosmochimica Acta, 50(9), 1967-1976.
Ricci, J.N., Coleman, M.L., Welander, P.V., Sessions, A.L., Summons, R.E., Spear, J.R., Newman, D.K., 2014. Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. International Society for Microbial Ecology. Journal, 8, 675-684. DOI:10.1038/ismej.2013.191
Ricken, W. 1993. Sedimentation as a three-component system. Lecture Notes in Earth Sciences, 51, 1- 211.
Saadi, M., Hital, E.A., Bensaïd, M., Boudda, A., Dahmani, M., 1985. Carte Géologique du Maroc. Éditions du Service Géologique du Maroc- Notes et Mémoires, 260.
Sachse, V.F., Littke, R., Heim, S., Kluth, O., Schober, J., Boutib, L., Jabour, H., Perssen, F., Sindern, S., 2011. Petroleum source rocks of the Tarfaya Basin and adjacent areas, Morocco. Organic Geochemistry, 42, 209-227.
Sachse, V.F., Littke, R., Jabour, H., Schumann, T., Kluth, O., 2012. Late Cretaceous (Late Turonian, Coniacian and Santonian)
petroleum source rocks as part of an OAE, Tarfaya Basin, Morocco. Marine and Petroleum Geology, 29, 35-49.
Sachse, V.F., Heim, S., Jabour, H., Kluth, O., Schümann, T., Aquit, M., Littke, R., 2014. Organic geochemical characterization
of Santonian to Early Campanian organic matter-rich marls (Sondage No 1 cores) as related to OAE3 from the Tarfaya Basin, Morocco. Marine and Petroleum Geology, 56, 290-304.
Schlanger, S.O., Jenkyns, H.C., 1976. Cretaceous anoxic events: Causes and consequences. Geologie en Mijnbow, 55, 179-
Schlanger, S.O., Arthur, M.A., Jenkyns, H.C., Scholle, P.A., 1987. The Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. London, Geological Society, 26(1), Special Publication, 371-399.
Schönfeld, J., Kuhnt, W., Erdem, Z., Flögel, S., Glock, N., Aquit, M., Frank, M., Holbourn, A., 2015. Records of past middepth ventilation: Cretaceous ocean anoxic event 2 vs. Recent oxygen minimum zones. Biogeosciences, 12(4), 1169-1189.
Schulze, E., Mooney, H.A., 1993. Biodiversity and ecosystem function. Berlin, Springer-Verlag, 521pp.
Schwarzbauer, J., Littke, R., Weigelt, V., 2000. Identification of specific organic contaminants for estimating the contribution
of the Elbe river to the pollution of the German Bight. Organic Geochemistry, 31, 1713-1731.
Senftle, J.T., Landis, C.R., McLaughlin, R.L., 1993. Organic petrographic approach to kerogen characterisation. In: Engel,
M.H., Macko, S.A. (eds.). Organic Geochemistry. Principles and Applications. New York, Plenum Press, 355-374.
Shanmungam, G., 1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. The American Association of Petroleum Geologists Bulletin, 69, 1241-1254.
SubseaIQ, 2014. Website: http://www.subseaiq.com/data/Project.aspx?project_id=1742#history. last accessed in 12 November 2016.
Summons, R.E., Jahnke, L.L., Hope, J.M., Logan, G.A., 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554-57
Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P., 1998. Organic Petrology. Stuttgart, Borntraeger, 704pp.
Teichmüller, M., Ottenjann, K., 1977. Art und Diagenese von Liptiniten und lipoiden Stoffen in einem Erdölmuttergestein
auf Grund fluoreszenzmikroskopischer Untersuchungen. Erdöl und Kohle, 30, 387-398.
Tissot, B., Welte, D.H., 1984. Petroleum Formation and Occurrence. New York, Springer- Verlag, 699pp. Welte, D.H., 1972. Petroleum exploration and organic geochemistry. Journal of Geochemical Exploration, 1, 117-136.
Wenke, A.A.O., 2014. Sequence stratigraphy and basin analysis of the Meso- to Cenozoic Tarfaya-Laâyoune. Basins, on- and offshore Morocco. Doctoral Thesis. Heidelberg, Ruprecht-Karls-Universität, 191pp. URN:nbn:de:bsz:16-heidok-179058
Wenke, A.A.O, Zühlke, R., Jabour, H., Kluth, O., 2011. Highresolution sequence stratigraphy in basin reconnaissance: example from the Tarfaya Basin, Morocco. First break, 29, 85-96.
Worthmann, U.G., Hesse, R., Zacher, W., 1999. Majorelement analysis of cyclic black shales: paleoceanographic implications for the Early Cretaceous deep western Tethys. Paleoceanography, 14, 525-541.
Yunker, M.B., Belicka, L.L., Harvey, H.R., Macdonald, R.W., 2005. Tracing the inputs and fate of marine and terrigenous organic matter in Arctic Ocean sediments: A multivariate analysis of lipid biomarkers. Deep-Sea Research II, 52, 3478-3508.
Zarhloule, Y., 2003. Overview of Geothermal Activities in Morocco. Proceedings of the International Geothermal Conference 2003, S10, P9.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
Geologica Acta is the property of the UB, GEO3BCN, IDAEA and UAB. Geologica Acta must be cited for any partial or full reproduction. Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows anyone to reproduce and disseminate the content of the journal and even make derivative works crediting authorship and provenance and distributing possible derivative works under the same or an equivalent license.
Author Rights
Authors retain the copyright on their papers and are authorized to post them on their own web pages or institutional repositories. The copyright was retained by the journal from the year 2003 until 2009. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission from Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.