Tourmaline records the hydrothermal events related to Zn-Pb mineralization around the Murguía diapir (Basque Cantabrian Basin, N Spain)

Authors

  • R. Galdos Faculty of Sciences and engineering, Pontificia Universidad Católica del Perú Av. Universitaria 1801, San Miguel, Lima 15088, Perú
  • A. Canals Departament de Mineralogia, Petrologia i Geologia aplicada, Universitat de Barcelona C/ Martí i Franquès, s/n, 08028 Barcelona, Spain
  • E. Cardellach Departament de Geologia, Universitat autònoma de Barcelona Edifici Cs, 08193 Cerdanyola del Vallès, Spain
  • J. Perona Centres Científics i Tecnològics, Universitat de Barcelona C/ Lluis Solé i Sabarís, 1-3, 08028 Barcelona, Spain

DOI:

https://doi.org/10.1344/GeologicaActa2019.17.5

Keywords:

Tourmaline, Salt diapir, Zn-Pb deposits, Basque Cantabrian Basin

Abstract

The chemical composition of tourmaline has been used as a host environment register as well as a potential exploration tool for mineral deposits. In this study, the textural and chemical composition of tourmalines associated with Zn-Pb mineralizations around the Murguía diapir (Basque Cantabrian Basin, N Spain) are examined to verify if they record the mineralizing events in the area. Petrographically, tourmalines have been differentiated between inherited and authigenic. Colorless authigenic tourmalines are present as halos partially around green and pleochroic detrital grains or as individual crystals. Inherited and authigenic tourmalines are also chemically distinct. Authigenic tourmalines show different X-site occupancies, a Mg/(Mg+Fe) ratio above 0.77, and are aluminum rich and plot to the right of the povondraite-oxidravite join, above the schorl-dravite join. Inherited tourmalines plot within the alkaline (Na+K) group field, and have a Mg/(Mg+Fe) ratio below 0.77. These data suggest that authigenic tourmalines grew under reducing conditions, compatible with the hydrothermal event responsible for the ore deposition and caprock formation during the diapir ascent.

References

Baksheev, I.A., Prokof’ev, V.Y., Yapaskurt, V.O., Vigasina, M.F., Zorina, L.D., Solov’ev, V.N., 2011. Ferric-iron-rich tourmaline from the Darasun gold deposit, Transbaikalia, Russia. The Canadian Mineralogist, 49(1), 263-276.

Dutrow, B.L., Henry, D.J., 2011. Tourmaline: A geological DVD. Elements, 7(5), 301-306.

Griffin, W.L., Slack, J.F., Ramsden, A.R., Win, T.T., Ryan, C.G., 1996. Trace elements in tourmalines from massive sulfides deposits and tourmalinites; geochemical controls and exploration applications. Economic Geology, 91(4), 657-675.

Hazarika, P., Mishra, B., Pruseth, KL., 2015. Diverse tourmaline compositions from orogenic gold deposits in the Hutti-Maski Greenstone Belt, India: implications for sources of oreforming fluids. Economic Geology, 110(2), 337–353.

Henry, D.J., Guidotti, C.V., 1985. Tourmaline as a petrogenetic indicator mineral- An example from the staurolite-grade

metapelites of NW Maine. American Mineralogist, 70(1-2), 1-15.

Henry, D.J., Kirkland, B.L., Kirkland, D.W., 1999. Sector-zoned tourmaline from the cap rock of a salt dome. European Journal of Mineralogy, 11(2), 263-280.

Henry, D.J., Sun, H., Slack, J.F., Dutrow, B.L., 2008. Tourmaline in meta-evaporites and highly magnesian rocks: perspectives

from Namibian tourmalinites. European Journal of Mineralogy, 20(5), 889-904.

Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P., Pezzotta, F., 2011. Nomenclature of the tourmalinesupergroup minerals. American Mineralogist, 96(5-6), 895-913.

Henry, D.J., Dutrow, B.L., 2012. Tourmaline at diagenetic to low-grade metamorphic conditions: Its petrologic applicability. Lithos, 154, 16-32.

Perona, J., Canals, À., Cardellach, E., 2018. Zn-Pb Mineralizations associated with salt diapirs in the BasqueCantabrian Basin (N Spain): Geology, geochemistry and genetic model. Economic Geology, 113(5), 1133-1159.

Ranta, J., Hanski, E., Cook, N., Lahaye, Y., 2017. Source of boron in the Palokas gold deposit, northern Finland: evidence from boron isotopes and major element composition of tourmaline. Mineralium Deposita, 52(5), 733-746.

Slack, J.F., Trumbull, R.B., 2011. Tourmaline as a recorder of ore-forming processes. Elements, 7(5), 321-326.

Tavani, S., Muñoz, J.A., 2012. Mesozoic rifting in the Basque–Cantabrian Basin (Spain): Inherited faults, transversal structures and stress perturbation. Terra Nova, 24(1), 70-76.

van Hinsberg, V.J., Henry, D.J., Marschall, H.R., 2011. Tourmaline: an ideal indicator of its host environment. The Canadian Mineralogist, 49(1), 1-16.

von Goerne, G., Franz, G., Heinrich, W., 2001. Synthesis of tourmaline solid solutions in the system Na2O–MgO–Al2O3–SiO2–B2O3–H2O–HCl and the distribution of Na between tourmaline and fluid at 300 to 700ºC and 200 MPa. Contributions to Mineralogy and Petrology, 141(2), 160-173. DOI: 10.1007/s004100100243

Žáček, V., Frýda, J., Petrov, A., Hyršl, J., 2000. Tourmalines of the povondraite- (oxy)dravite series from the cap rock of meta-evaporite in Alto Chapare, Cochabamba, Bolivia. Journal of Czech Geological Society, 45(1-2), 3-12.

Downloads

Published

2019-06-05

Issue

Section

Articles