Learning in the openness: the lost way of the MOOC

Authors

DOI:

https://doi.org/10.1344/der.2020.38.42-60

Keywords:

MOOC, Collaboration, OER, Network-based learning, Lifelong learning

Abstract

At the end of the 2000´s, MOOCs broke into the educational field with the promise of learning with features more suited to the demands of our times. Their connectivist genesis provided a provocative expectation regarding the potential of collaboration, sharing, reuse, and free access, as factors of a possible transformation of the current educational system, which has been characterized by being rigid and reluctant to change. Given the relevance and growing participation of MOOC in education, there is a strong interest in understanding both their functioning and structure so that they can be considered as relevant educational options for a networked society. In this sense, a mixed study was conducted on 225 MOOCs based on the four categories that make up their denomination. The results of the study show that the contributions of MOOCs as generators of shared and collaborative learning experiences as proposed in their origins are not reflected in the reality of their current offering.

Author Biography

Andres Chiappe, Universidad de La Sabana

Associate Professor at Center of Technologies for Academia

References

Álvarez, C. Á., & Maroto, J. L. S. F. (2012). La elección del estudio de caso en investigación educativa. Gazeta de Antropología, 28(1), 1–13.

Babini, D. (2011). Acceso abierto a la producción científica de América Latina y el Caribe: Identification of main institutions for regional integration strategies. Revista Iberoamericana de Ciencia Tecnología y Sociedad, 6(17), 31–56.

Batchelor, J., & Lautenbach, G. (2015). Cultivating lifelong learning: Pre-service teachers and their MOOCs. In 2015 IST-Africa Conference, IST-Africa 2015 (pp. 1–8). Lilongwe; Malawi: IEEE. https://doi.org/10.1109/ISTAFRICA.2015.7190557

Bolívar, C. R. (2008). El enfoque multimétodo en la investigación social y educativa: una mirada desde el paradigma de la complejidad. Teré: Revista de Filosofía y Socio-Política de La Educación, (8), 13–28.

Conole, G. (2016). MOOCs as disruptive technologies: strategies for enhancing the learner experience and quality of MOOCs. Revista de Educación a Distancia (RED), 50(2), 1–18. http://dx.doi.org/10.6018/red/50/2

Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (Third edition). London, UK: Sage publications. Retrieved from https://goo.gl/XEABp0

Cross, S., & Whitelock, D. (2017). Similarity and difference in fee-paying and no-fee learner expectations, interaction and reaction to learning in a massive open online course. Interactive Learning Environments, 25(4), 439–451. https://doi.org/10.1080/10494820.2016.1138312

Dessì, D., Fenu, G., Marras, M., & Reforgiato Recupero, D. (2019). Bridging learning analytics and Cognitive Computing for Big Data classification in micro-learning video collections. Computers in Human Behavior, 92, 468–477. https://doi.org/10.1016/j.chb.2018.03.004

Díaz López, S. M. (2014). Los métodos mixtos de investigación: presupuestos generales y aportes a la evaluación educativa. Revista Portuguesa de Pedagogía, 48(1). Retrieved from https://digitalis-dsp.sib.uc.pt/handle/10316.2/36342

Duart, J. M., Roig-Vila, R., Mengual, S., & Maseda Durán, M.-Á. (2017). La calidad pedagógica de los MOOC a partir de la revisión sistemática de las publicaciones JCR y Scopus (2013-2015). Revista Española de Pedagogía, 75(1), 29–46. https://doi.org/10.22550/REP75-1-2017-02

Grant, M. J., Button, C. M., & Snook, B. (2017). An Evaluation of Interrater Reliability Measures on Binary Tasks Using d-Prime. Applied Psychological Measurement, 41(4), 264–276. https://doi.org/10.1177/0146621616684584

Hermans, R., Tondeur, J., van Braak, J., & Valcke, M. (2008). The impact of primary school teachers’ educational beliefs on the classroom use of computers. Computers & Education, 51(4), 1499–1509. https://doi.org/10.1016/j.compedu.2008.02.001

Higashi, R. M., Schunn, C. D., & Flot, J. B. (2017). Different underlying motivations and abilities predict student versus teacher persistence in an online course. Educational Technology Research and Development. https://doi.org/10.1007/s11423-017-9528-z

Houghton, C., Casey, D., Shaw, D., & Murphy, K. (2013). Rigour in qualitative case-study research. Nurse Researcher, 20(4), 12–17.

Hsu, S. (2017). Developing and validating a scale for measuring changes in teachers’ ICT integration proficiency over time. Computers & Education, 111, 18–30. https://doi.org/10.1016/j.compedu.2017.04.001

Jin, D., Shi, S., Zhang, Y., Abbas, H., & Goh, T.-T. (2019). A complex event processing framework for an adaptive language learning system. Future Generation Computer Systems, 92, 857–867. https://doi.org/10.1016/j.future.2017.12.032

Kashyap, A., & Nayak, A. (2018). Different Machine Learning Models to Predict Dropouts in MOOCs. In 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 80–85). Bangalore: IEEE. https://doi.org/10.1109/ICACCI.2018.8554547

Khalil, M., & Ebner, M. (2016). When Learning Analytics Meets MOOCs - a Review on iMooX Case Studies. In G. Fahrnberger, G. Eichler, & C. Erfurth (Eds.), Innovations for Community Services (Vol. 648, pp. 3–19). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-49466-1_1

Khan, M. S. H., & Markauskaite, L. (2017). Approaches to ICT-enhanced teaching in technical and vocational education: a phenomenographic perspective. Higher Education, 73(5), 691–707. https://doi.org/10.1007/s10734-016-9990-2

Lemos de Carvalho Júnior, G., Raposo Rivas., M., Cebrián de la Serna, M., & Sarmiento Campos, J. A. (2017). Análisis de la perspectiva pedagógica de los MOOC ofertados en lengua portuguesa. Revista Española de Pedagogía, 75(1), 101–119. https://doi.org/10.22550/REP75-1-2017-06

Lerís, D., Sein-Echaluce, M. L., Hernández, M., & Bueno, C. (2017). Validation of indicators for implementing an adaptive platform for MOOCs. Computers in Human Behavior, 72, 783–795. https://doi.org/10.1016/j.chb.2016.07.054

Li, K. (2019). MOOC learners’ demographics, self-regulated learning strategy, perceived learning and satisfaction: A structural equation modeling approach. Computers & Education, 132, 16–30. https://doi.org/10.1016/j.compedu.2019.01.003

Li, W., Gao, M., Li, H., Xiong, Q., Wen, J., & Wu, Z. (2016). Dropout prediction in MOOCs using behavior features and multi-view semi-supervised learning (pp. 3130–3137). IEEE. https://doi.org/10.1109/IJCNN.2016.7727598

Mackness, J., Waite, M., Roberts, G., & Lovegrove, E. (2013). Learning in a small, task–oriented, connectivist MOOC: Pedagogical issues and implications for higher education. The International Review of Research in Open and Distributed Learning, 14(4). https://doi.org/10.19173/irrodl.v14i4.1548

Matías González, H., & Pérez Avila, A. (2014). Los Cursos en Línea Masivos y Abiertos (MOOC) como alternativa para la educación a distancia (Massive Open Online Courses (MOOC), an alternative to distance learning). GECONTEC: Revista Internacional de Gestión Del Conocimiento y La Tecnología, 2(2). Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2438173

Mertens, D. M. (2014). Research and evaluation in education and psychology: Integrating diversity with quantitative, qualitative, and mixed methods. Sage publications. Retrieved from https://goo.gl/SNEsux

Nagrecha, S., Dillon, J. Z., & Chawla, N. V. (2017). MOOC Dropout Prediction: Lessons Learned from Making Pipelines Interpretable. In Proceedings of the 26th International Conference on World Wide Web Companion - WWW ’17 Companion (pp. 351–359). Perth, Australia: ACM Press. https://doi.org/10.1145/3041021.3054162

Ossiannilsson, E., Altinay, F., & Altinay, Z. (2015). Analysis of MOOCs practices from the perspective of learner experiences and quality culture. Educational Media International, 52(4), 272–283. https://doi.org/10.1080/09523987.2015.1125985

Pazur Anicic, K., Divjak, B., & Arbanas, K. (2016). Preparing ICT Graduates for Real-World Challenges: Results of a Meta-Analysis. IEEE Transactions on Education, 1–7. https://doi.org/10.1109/TE.2016.2633959

Pete, J., Mulder, F., & Oliveira Neto, J. D. (2017). Differentiation in Access to, and the Use and Sharing of (Open) Educational Resources among Students and Lecturers at Kenyan Universities. Open Praxis, 9(2), 173. https://doi.org/10.5944/openpraxis.9.2.574

Pilli, O., & Admiraal, W. (2016). A taxonomy for Massive Open Online Courses. Contemporary Educational Technology, 7(3), 223–240.

Ramírez Montoya, M. S. (2013). Challenges and perspectives for the open education movement in the distance education environment: a diagnostic study in a SINED project. RUSC. Universities and Knowledge Society Journal, 10(2), 170. https://doi.org/10.7238/rusc.v10i2.1719

Ramírez Montoya, M. S., & García-Peñalvo, F. J. (2015). Movimiento educativo abierto. Virtualis, 6(12). Retrieved from https://goo.gl/8DshkT

Raposo Rivas, M., Martínez Figueira, E., & Sarmiento Campos, J. A. (2015). A Study on the Pedagogical Components of Massive Online Courses. Comunicar, 22(44), 27–35. https://doi.org/10.3916/C44-2015-03

Robles Garrote, P., & del Carmen Rojas, M. (2015). La validación por juicio de expertos: dos investigaciones cualitativas en Lingüística aplicada. Revista Nebrija de Lingüística Aplicada a La Enseñanza de Lenguas, (18), 1–16.

Russell, J. S., Menassa, C. C., & McCloskey, E. (2014). Lifelong Learning to Leverage Project and Career Success: 21st-Century Imperative. Practice Periodical on Structural Design and Construction, 19(1), 137–141. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000201

Sánchez Gómez, M. C. (2015). La dicotomía cualitativo-cuantitativo: posibilidades de integración y diseños mixtos. Campo Abierto, Monográfico, 11–30.

Sanchez-Gordon, S., & Luján-Mora, S. (2017). Research challenges in accessible MOOCs: a systematic literature review 2008–2016. Universal Access in the Information Society. https://doi.org/10.1007/s10209-017-0531-2

Sangrà, A., González-Sanmamed, M., & Anderson, T. (2015). Meta-analysis of the research about MOOC during 2013-2014. Educación XX1, 18(2). https://doi.org/10.5944/educxx1.14808

Schuetze, H. G. (2006). International concepts and agendas of Lifelong Learning. Compare: A Journal of Comparative and International Education, 36(3), 289–306. https://doi.org/10.1080/03057920600872381

Shapiro, H. B., Lee, C. H., Wyman Roth, N. E., Li, K., Çetinkaya-Rundel, M., & Canelas, D. A. (2017). Understanding the massive open online course (MOOC) student experience: An examination of attitudes, motivations, and barriers. Computers & Education, 110, 35–50. https://doi.org/10.1016/j.compedu.2017.03.003

Siddiq, F., Gochyyev, P., & Wilson, M. (2017). Learning in Digital Networks – ICT literacy: A novel assessment of students’ 21st century skills. Computers & Education, 109, 11–37. https://doi.org/10.1016/j.compedu.2017.01.014

Silverman, D. (Ed.). (2016). Qualitative research (Fourth Edition). Los Angeles: Sage.

Stake, R. E. (2013). Multiple case study analysis. New York: Guilford Press. Retrieved from https://goo.gl/DgcYDS

Stuchlikova, L. (2016). Challenges of education in the 21st century. In S. Smokovec (Ed.), ICETA 2016 - 14th IEEE International Conference on Emerging eLearning Technologies and Applications, Proceedings (pp. 335–340). The High Tatras; Slovakia: IEEE. https://doi.org/10.1109/ICETA.2016.7802072

Suresh Kumar, S., & Mallikarjuna Shastry, P. M. (2019). Analysis of Student Engagement and Course Completion in Massive Open Online Courses. In A. N. Krishna, K. C. Srikantaiah, & C. Naveena (Eds.), Integrated Intelligent Computing, Communication and Security (Vol. 771, pp. 447–458). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-8797-4_46

Taylor, S. J., Bogdan, R., & DeVault, M. L. (2016). Introduction to qualitative research methods: a guidebook and resource (Fourth edition). Hoboken, New Jersey: John Wiley & Sons, Inc.

Tondeur, J., van Braak, J., & Valcke, M. (2007). Curricula and the use of ICT in education: Two worlds apart? British Journal of Educational Technology, 38(6), 962–976. https://doi.org/10.1111/j.1467-8535.2006.00680.x

Tovar, E., & Piedra, N. (2014). Guest Editorial: Open Educational Resources in Engineering Education: Various Perspectives Opening the Education of Engineers. IEEE Transactions on Education, 57(4), 213–219. https://doi.org/10.1109/TE.2014.2359257

Varol, F. (2013). Elementary school teachers and teaching with technology. TOJET: The Turkish Online Journal of Educational Technology, 12(3), 85–90.

Whitehill, J., Mohan, K., Seaton, D., Rosen, Y., & Tingley, D. (2017). MOOC Dropout Prediction: How to Measure Accuracy? (pp. 161–164). ACM Press. https://doi.org/10.1145/3051457.3053974

Wilson, M., Scalise, K., & Gochyyev, P. (2015). Rethinking ICT literacy: From computer skills to social network settings. Thinking Skills and Creativity, 18, 65–80. https://doi.org/10.1016/j.tsc.2015.05.001

Wong, J., Baars, M., Davis, D., Van Der Zee, T., Houben, G.-J., & Paas, F. (2019). Supporting Self-Regulated Learning in Online Learning Environments and MOOCs: A Systematic Review. International Journal of Human–Computer Interaction, 35(4–5), 356–373. https://doi.org/10.1080/10447318.2018.1543084

Xi, J., Chen, Y., & Wang, G. (2018). Design of a Personalized Massive Open Online Course Platform. International Journal of Emerging Technologies in Learning (IJET), 13(04), 58. https://doi.org/10.3991/ijet.v13i04.8470

Zhang, H., Huang, T., Lv, Z., Liu, S., & Zhou, Z. (2017). MCRS: A course recommendation system for MOOCs. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-017-4620-2

Downloads

Published

2020-12-21

Issue

Section

Peer Review Articles