Evaluation of Li-TMS as an intervention to enhance cognitive performance in university students
Li-TMS Enhances cognitive performance
DOI:
https://doi.org/10.1344/joned.v5i2.47351Keywords:
Li-TMS; cognitive performance; DSST; neuroscience; cognitive trainingAbstract
Background:The present study evaluated the impact of low-intensity transcranial magnetic stimulation (Li-TMS) on the cognitive performance of university students. Given the increasing interest in non-invasive brain stimulation techniques to enhance cognitive functions, this study aims to explore the efficacy of Li-TMS using the Digit Symbol Substitution Test (DSST) as a measure of cognitive performance. Methods: The sample included 30 participants, who were randomly divided into two groups: an experimental group and a control group. The experimental group received daily Li-TMS sessions for 10 days. In contrast, the control group received sham low-intensity sessions under the same temporal protocol to control for placebo effects. The DSST was administered to all participants before and after the intervention to assess changes in cognitive performance. Results: The results demonstrated a significant improvement in DSST scores in the experimental group compared to the control group. This finding suggests that Li-TMS can effectively enhance specific cognitive skills in a young and healthy population. Conclusion: Li-TMS appears to be a promising tool for cognitive enhancement, with potential applications in educational and professional settings. These findings support the utility of Li-TMS as a cognitive training intervention, offering a non-invasive method to improve cognitive functions in young adults. Further research is warranted to explore the long-term effects and underlying mechanisms of Li-TMS on cognitive performance.
References
Mewborn C, Lindbergh CA, Miller LS. Cognitive interventions for enhancing executive function in older adults: A systematic review and meta-analysis of recent studies. Psychol Aging. 2017 Mar;32(1):16-28. doi: 10.1037/pag0000148.
Shute VJ, Ventura M, Ke F. The power of play: The effects of Portal 2 and Lumosity on cognitive and noncognitive skills. Comput Educ. 2015;80:58-67. doi: 10.1016/j.compedu.2014.08.013.
Binet A, Simon T. The development of intelligence in children. L’Année Psychologique. 1905;12:191-244.
Bjorklund DF, Causey KB. Children’s Thinking: Cognitive Development and Individual Differences. 6th ed. SAGE Publications; 2018.
Merzenich MM, Kaas JH, Sur M. Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience. 1983;10(3):639-665. doi: 10.1016/0306-4522(83)90249-2.
Feuerstein R, Feuerstein RS, Falik LH. The Feuerstein Instrumental Enrichment Program. Educ Psychol Rev. 2010;22(1):89-101. doi: 10.1007/s10648-010-9138-7.
Kurzban R, Duckworth A, Kable JW, Myers J. An opportunity cost model of subjective effort and task performance. Behav Brain Sci. 2013;36(6):661-679. doi: 10.1017/S0140525X12003196.
Owen AM, Hampshire A, Grahn JA, Stenton R, Dajani S, Burns AS, et al. Putting brain training to the test: A randomized, controlled trial of cognitive training. Nature. 2010;465(7299):775-778. doi: 10.1038/nature09042.
Lampit A, Hallock H, Valenzuela M. Computerized cognitive training in cognitively healthy older adults: A systematic review and meta-analysis of effect modifiers. PLoS Med. 2014;11(11). doi: 10.1371/journal.pmed.1001756.
Melby-Lervåg M, Redick TS, Hulme C. Working memory training does not improve performance on measures of intelligence or other measures of “far transfer”: Evidence from a meta-analytic review. Perspect Psychol Sci. 2016;11(4):512-534. doi: 10.1177/1745691616635612.
Morrison AB, Chein JM. Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychon Bull Rev. 2011;18(1):46-60. doi: 10.3758/s13423-010-0034-0.
Sprague BN, Freed SA, Webb CE, Phillips CB, Hyun J, Ross LA. The impact of behavioral interventions on cognitive function in healthy older adults: A systematic review. Ageing Research Reviews. 2019 Jul;52:32-52. doi: 10.1016/j.arr.2019.04.002
Basak C, Qin S, O’Connell MA. Differential effects of cognitive training modules in healthy aging and mild cognitive impairment: A comprehensive meta-analysis of randomized controlled trials. Psychol Aging. 2020 Mar;35(2):220-249. doi: 10.1037/pag0000442.
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol. 2020 Feb;131(2):474-528. doi: 10.1016/j.clinph.2019.11.002. Epub 2020 Jan 1. Erratum in: Clin Neurophysiol. 2020 May;131(5):1168-1169. doi: 10.1016/j.clinph.2020.02.003.
Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004 Jun 25;304(5679):1926-9. doi: 10.1126/science.
Klimesch W, Sauseng P, Gerloff C. Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur J Neurosci. 2003 Apr;17(6):1129–1133. doi: 10.1046/j.1460-9568.2003.02517.x.
Romei V, Driver J, Schyns PG, Thut G. Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr Biol. 2011 Feb;21(5):334–337. doi: 10.1016/j.cub.2011.01.035.
Tegenthoff M, Ragert P, Pleger B, Schwenkreis P, Förster AF, Dinse HR. Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. PLoS Biol. 2005 Nov;3(11):e362. doi: 10.1371/journal.pbio.0030362.
Boyd LA, Linsdell MA. Excitatory repetitive transcranial magnetic stimulation to left dorsal premotor cortex enhances motor consolidation of new skills. BMC Neurosci. 2009 Jul;10(72):1471–2202. doi: 10.1186/1471-2202-10-72.
Bütefisch CM, Khurana V, Kopylev L, Cohen LG. Enhancing encoding of a motor memory in the primary motor cortex by cortical stimulation. J Neurophysiol. 2004 May;91(5):2110–2116. doi: 10.1152/jn.01038.2003.
Tadin D, Silvanto J, Pascual-Leone A, Battelli L. Improved motion perception and impaired spatial suppression following disruption of cortical area MT/V5. J Neurosci. 2011 Jan;31(4):1279–1283. doi: 10.1523/JNEUROSCI.4121-10.2011.
Oliveri M, Zhaoping L, Mangano GR, Turriziani P, Smirni D, Cipolotti L. Facilitation of bottom-up feature detection following rTMS-interference of the right parietal cortex. Neuropsychologia. 2010 Mar;48(4):1003–1010. doi: 10.1016/j.neuropsychologia.2009.11.020.
Bashir S, Mizrahi I, Weaver K, Fregni F, Pascual-Leone A. Assessment and modulation of neural plasticity in rehabilitation with transcranial magnetic stimulation. PM R. 2010 Apr;2(Suppl. 2):S253–S268. doi: 10.1016/j.pmrj.2010.03.021.
Emara TH, Moustafa RR, Elnahas NM, Roushdy TM, Elganzoury AM, AboulEzz HS, Hashem HM. Repetitive transcranial magnetic stimulation at 1 Hz and 5 Hz produces sustained improvement in motor function and disability after ischaemic stroke. Eur J Neurol. 2010 Aug;17(9):1203–1209. doi: 10.1111/j.1468-1331.2010.03000.x.
Cicerone K, Levin H, Malec J, Stuss D, Whyte J. Cognitive rehabilitation interventions for executive function: moving from bench to bedside in patients with traumatic brain injury. J Cogn Neurosci. 2006 Jul;18(7):1212–1222. doi: 10.1162/jocn.2006.18.7.1212.
Solé-Padullés C, Bartrés-Faz D, Junqué C, Clemente IC, Molinuevo JL, Bargalló N, Bosch B, Sánchez-Valle R, Bernabeu M, Moral P. Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction: A randomized sham-controlled study. Cereb Cortex. 2006 Oct;16(10):1487–1493. doi: 10.1093/cercor/bhj083.
McKinley RA, Bridges N, Walters CM, Nelson J. Modulating the brain at work using noninvasive transcranial stimulation. Neuroimage. 2012 Jan;59(1):129–137. doi: 10.1016/j.neuroimage.2011.07.075.
Snyder AW. Explaining and inducing savant skills: privileged access to lower level, less-processed information. Philos Trans R Soc Lond B Biol Sci. 2009 Jun;364(1522):1399–1405. doi: 10.1098/rstb.2008.0290.
Boake C. From the Binet-Simon to the Wechsler-Bellevue: tracing the history of intelligence testing. J Clin Exp Neuropsychol. 2002;24(3):383–405. doi: 10.1076/jcen.24.3.383.981.
Wechsler D. The Measurement of Adult Intelligence. Baltimore, MD: The Williams & Wilkins Company; 1939.
Mewborn CM, Lindbergh CA, Stephen Miller L. Cognitive Interventions for Cognitively Healthy, Mildly Impaired, and Mixed Samples of Older Adults: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. Neuropsychol Rev. 2017 Dec;27(4):403-439. doi: 10.1007/s11065-017-9350-8.
Shute VJ, Ventura M, Ke F. The power of play: The effects of Portal 2 and Lumosity on cognitive and noncognitive skills. Comput Educ. 2015;80:58-67. doi: 10.1016/j.compedu.2014.08.013.
Owen AM, Hampshire A, Grahn JA, Stenton R, Dajani S, Burns AS, et al. Putting brain training to the test: A randomized controlled trial of cognitive training. Nature. 2010;465(7299):775-778. doi: 10.1038/nature09042
Melby-Lervåg M, Redick TS, Hulme C. Working memory training does not improve performance on measures of intelligence or other measures of “far transfer”: Evidence from a meta-analytic review. Perspect Psychol Sci. 2016;11(4):512-534. doi: 10.1177/1745691616635612.
Morrison AB, Chein JM. Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychon Bull Rev. 2011;18(1):46-60. doi: 10.3758/s13423-010-0034-0.
Zhou L, Huang X, Li H, Guo R, Wang J, Zhang Y, Lu Z. Rehabilitation effect of rTMS combined with cognitive training on cognitive impairment after traumatic brain injury. Am J Transl Res. 2021 Oct 15;13(10):11711-11717. PMCID: PMC8581933.
Bagattini C, Zanni M, Barocco F, Caffarra P, Brignani D, Miniussi C, et al. Enhancing cognitive training effects in Alzheimer’s disease: rTMS as an add-on treatment. Brain Stimul. 2020 Nov-Dec;13(6):1655-1664. doi: 10.1016/j.brs.2020.09.010.
Jiang L, Cui H, Zhang C, Cao X, Gu N, Zhu Y, et al. Repetitive Transcranial Magnetic Stimulation for Improving Cognitive Function in Patients With Mild Cognitive Impairment: A Systematic Review. Front Aging Neurosci. 2021 Jan 14;12:593000. doi: 10.3389/fnagi.2020.593000.
Beynel L, Appelbaum LG, Luber B, Crowell CA, Hilbig SA, Lim W, et al. Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: A meta-analysis and recommendations for future studies. Neurosci Biobehav Rev. 2019 Dec;107:47-58. doi: 10.1016/j.neubiorev.2019.08.018.
Xie Y, Li Y, Nie L, Zhang W, Ke Z, Ku Y. Cognitive Enhancement of Repetitive Transcranial Magnetic Stimulation in Patients With Mild Cognitive Impairment and Early Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Front Cell Dev Biol. 2021 Sep 10;9:734046. doi: 10.3389/fcell.2021.734046.
Antonenko D, Fromm AE, Thams F, Grittner U, Meinzer M, Flöel A. Microstructural and functional plasticity following repeated brain stimulation during cognitive training in older adults. Nat Commun. 2023 Jun 2;14(1):3184. doi: 10.1038/s41467-023-38910-x.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Raúl Sampieri Cabrera, Alan Oviedo, Erandi Pérez

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal agree to the following terms:
a. Authors retain copyright and grant the journal the right of first publication
b. Texts will be published under a Creative Commons Attribution Non Commercial License that allows others to share the work, provided they include an acknowledgement of the work’s authorship, its initial publication in this journal and the terms of the license, and not for commercial use.