Petrology of the Porriño late-Variscan pluton from NW Iberia. A model for post-tectonic plutons in collisional settings
DOI:
https://doi.org/10.1344/GeologicaActa2017.15.4.3Keywords:
Post-orogenic magmatism, Variscan orogen, Postectonic granites, Monzogranites, EnclavesAbstract
The Variscan orogen of NW Iberia contains abundant syn- and post-tectonic granitoids. The post-tectonic granitoids are metaluminous to slightly peraluminous, I-type granites, monzogranites ± granodiorites ± tonalites. The Porriño pluton studied here is a representative example. It consists of two units: i) a pink-red, peraluminous, biotite granite and ii) a gray, metaluminous to peraluminous, biotite (± amphibole ± titanite) monzogranite, including maficintermediate enclaves. SHRIMP U-Pb dating yielded 290-295Ma ages for all the units. The mineralogy and geochemistry show that the pink-red granite has features of I- and A-type granites, whereas the gray monzogranite and enclaves are I-types. Sr isotopes show scattered values for the pink-red granite (87Sr/86Sr295Ma ≈ 0.702-0.710) and uniform values for the gray monzogranite and enclaves (87Sr/86Sr295Ma≈ 0.705-0.706). Geochemical results indicate a peritectic entrainment of clinopyroxene + orthopyroxene ± Ca-plagioclase ± ilmenite ± garnet, and minor accessory phases (± zircon ± titanite ± apatite) into a melt similar to the leucocratic gray monzogranite. A mafic-intermediate source is proposed for the gray monzogranite and its enclaves. Restitic protoliths generated granitic melts with A-type features such as the pink-red granite. The I-type nature of many post-tectonic granitoids could be explained by the previous extraction of S-type syn-tectonic granites that left restites and less fertile rocks. Late orogenic new melting affected the previously unmelted and more mafic lithologies of the lower-middle crust, and gave rise to I-type granitoids. Repeated melting events affecting such lithologies and previous restites could have generated granitic melts with A-type features.
References
Abdel-Rahman, A.M., 1994. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. Journal of Petrology,
, 525-541.
Altherr, R., Holl, A., Hegner, E., Langer, C., Kreuzer, H., 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50, 51-73.
Anderson, J.L., 1983. Proterozoic anorogenic granite plutonism of North America. Geological Society of America Memoir,
, 133-154.
Anderson, J.L., Smith, D.R., 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80, 549-559.
Aranguren, A., Román-Berdiel, T., Cuevas, J., Tubía, J.M., 2000. Fábrica magnética del plutón de La Tojiza (Galicia). Revista
de la Sociedad Geológica de España, 13(1), 121-130.
Barrera Morate, J.L., Farias Arquer, P., González Lodeiro, F., Marquínez García, J., Martín Parra, L.M., Martínez Catalán, J.R., Olmo Sanz, A., Pablo Maciá, J.G. de, 1989. Hoja y Memoria del Mapa Geológico de España E 1:200.000 nº 17 (Orense-Verín). Instituto Geológico y Minero de España (IGME), Primera edición, 284pp.
Bea, F., 1996. Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal
melts. Journal of Petrology, 37(3), 521-522.
Bea, F., 2004. La naturaleza del magmatismo de la Zona Centroibérica: Consideraciones generales y ensayo de correlación. In: Vera, J.A. (ed.). Sociedad Geológica de España–Instituto Geológico y Minero de España (SGE-IGME),. Madrid, 128-133.
Bea, F., 2012. The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos, 153, 278-291.
Bea, F., Pereira, M.D., Corretgé, L.G., Fershtater, G.B., 1994. Differentiation of strongly peraluminous, perphosphorous granites: The Pedrobernardo pluton, central Spain. Geochimica et Cosmochimica Acta, 58(12), 2609-2627.
Bea, F., Montero, P., Stroh, A., Bassner, J., 1996. Microanalysis of minerals by an excimer UV-LA-ICP-MS system. Chemical
Geology, 133, 145-156.
Bea, F., Montero, P., Zinger, T., 2003. The nature and origin of the granite source layer of central Iberia: evidence from trace
element, Sr, and Nd isotopes, and zircon age patterns. Journal of Geology, 11, 579-595.
Bea, F., Fershtater, G.B., Montero, P., Smirnov, V.N., Molina, J.F., 2005. Deformation-driven differentiation of granitic magma: the Stepninsk pluton of the Uralides, Russia. Lithos, 81, 209-233.
Bellido Mulas, F., González Lodeiro, F., Klein, E., Martínez Catalán, J.R., Pablo Maciá, J.G. de, 1987. Las rocas graníticas hercínicas del norte de Galicia y occidente de Asturias. Colección Memorias Instituto Geológico y Minero de España, 101, 157pp.
Bellido, F., Monteserín, V., Gumiel, P., Ferrero, A., Baltuille, J.M., López, M.T., 2005. Características petrológicas y geoquímicas de las principales variedades de granitos ornamentales del macizo de “O Porriño” (SO de Galicia). Boletín Geológico y Minero, 116(4), 331-349.
Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.A., Davis, D.W., Korsch, J.R., Foudolis, C., 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200, 155-170.
Bonin, B., 2004. Do coeval mafic and felsic magmas in postcollisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 78, 1-24.
Bruiyn, H., Westhuizen, W.A., van der, Schoch, A.E., 1983. The estimation of FeO, F and H2O+ by regression in microprobe
analyses of natural biotite. Trace and Microprobe Techniques, 114, 399-412.
Capdevila, R., Floor, P., 1970. Les differents types de granites hercyniens et leur distribution dans le Nord-Ouest de l’Espagne. Boletín Geológico y Minero, 81, 215-225.
Capdevila, R., Corretgé, L.G., Floor, P., 1973. Les granitoides varisques de la Meseta Ibérique. Bulletin de la Société Géologique de France, 15, 209-228.
Castro, A., 2013. The off-crust origin of granite batholiths. Geoscience Frontiers, 5, 63-75.
Castro, A., Patiño-Douce, A.E., Corretgé, L.G., de la Rosa, J.D., ElBiad, M., El-Hmidi, H., 1999. Origin of peraluminous granites
and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis. Contributions to Mineralogy and Petrology, 135, 255-276.
Chappell, B.W., White, A.J.R., 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83, 1-26.
Clemens, J.D., Bezuidenhout, A., 2014. Origins of co-existing diverse magmas in a felsic pluton: the Lysterfield Granodiorite,
Australia. Contributions to Mineralogy and Petrology, 167, 991. DOI: 10.1007/s00410-014-0991-9.
Clemens, J.D., Stevens, G., 2012. What controls chemical variation in granitic magmas? Lithos, 134-135, 317-329.
Clemens, J.D., Stevens, G., Farina, F., 2011. The enigmatic sources of I-type granites: the perictectic connection. Lithos, 126, 174-181.
Corretgé, L.G., Suárez, O., Llana, R., 1981. Variaciones petrográficas y geoquímicas en plutones graníticos: zonación y criptozonación en batolitos epizonales. Cuadernos del Laboratorio Xeoloxico de Laxe, 2, 11-31.
Corretgé, L.G., Suárez, O., Galán, G., Fernández-Suárez, J., 2004. Zona Asturoccidental-leonesa: Magmatismo. In: Vera, J.A. (ed.). Geología de España. Sociedad Geológica de España – Instituto Geológico y Minero de España (SGEIGME), Madrid, 63-68.
Cottard, F., 1979. Pétrologie structurale et métallogénie du complexe granitique de Lovios-Geres. Le modèle de mise en place de la mine de Las Sombras (Sn-W-Mo-Bi) (Sud GaliceEspagne). Thèse 3éme cycle. Université Nancy I, 226pp.
Cuesta, A., 1991. Petrología granítica del plutón de Caldas de Reis (Pontevedra, España). Estructura, mineralogía, geoquímica y petrogénesis. Laboratorio Xeoloxico de Laxe, Serie Nova Terra, 5, 363pp.
Cuesta, A., Gallastegui, G., 2004. Magmatismo de la Zona Centroibérica: Galicia occidental. In: Vera, J.A. (ed.). Geología de España. Sociedad Geológica de España – Instituto Geológico y Minero de España (SGE-IGME), Madrid, 96-100.
Czamanske, G.K., Ishihara, S., Atkin, S.A., 1981. Chemistry of rock-forming minerals of the Cretaceous - Paleocene batholith
in southwestern Japan and implications for magma genesis. Journal of Geophysical Research, 86(B11), 10431-10469.
Dall’Agnol, R., Teixeira, N.P., Rämö, O.T., Moura, C.A.V., Macambira, M.J.B., Oliveira, D.C., 2005. Petrogenesis of the Paleoproterozoic, rapakivi, A-type granites of the Archean Carajás Metallogenic Province, Brazil. Lithos, 80, 101-129.
Dall’Agnol, R., Oliveira, D.C., 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: implications for classification and petrogenesis of A-type granites. Lithos, 93, 215-233.
Dallmeyer, R.D., Martínez Catalán J.R., Arenas, R., Gil Ibarguchi, J.I., Gutiérrez Alonso, G., Farias, P., Aller, J., Bastida, F., 1997. Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics, 277, 307-337.
Davidson, J., Turner, S., Plank, T., 2013. Dy/Dy*: Variations arising from mantle sources and petrogenetic processes. Journal of Petrology, 54(3), 525-537.
Debon, F., Lemmet, M., 1999. Evolution of Mg/Fe ratios in late variscan plutonic rocks from the external crystalline massifs
of the Alps (France, Italy, Switzerland). Journal of Petrology, 40(7), 1151-1185.
Eby, N., 2011. A-type granites: magma sources and their contribution to the growth of the continental crust. Seventh Hutton Symposium on Granites and Related Rocks, pp. 50-51.
Elliot, B.A., 2003. Petrogenesis of post-kinematic magmatism of the Central Finland Granitoid Complex II; sources and magmatic evolution. Journal of Petrology, 44(9), 1681-1701.
England, P.C., Thompson, A.B., 1986. Some thermal and tectonic models for crustal melting in continental collision belts.
In: Coward, M.P., Ries, A.C., (eds.). Collision Tectonics. Geological Society of London Special Publication, 19, 83-94.
Fernández-Suárez, J., Dunning, G.R., Jenner, G.A., GutiérrezAlonso, G., 2000. Variscan collisional magmatism and deformation in NW Iberia: constraints from U-Pb geochronology of granitoids. Journal of the Geological Society (London), 157, 565-576.
Finger, F., Steyer, H.P., 1990. I-type granitoids as indicators of late Paleozoic convergent ocean-continent margin along the
southern flank of the central European Variscan orogeny. Geology, 18, 1207-1210.
García Garzón, J., 1987. Datación por el método Rb-Sr de dos muestras de granito de Galicia: granito tipo Padrón y granito
tipo Porriño. Boletín Geológico y Minero, 98, 107-110.
González-Menéndez, L., 1998. Petrología y geoquímica del batolito de Nisa-Alburquerque (Alto Alentejo, Portugal, Extremadura, España). PhD Thesis, University of Granada, Spain, 223pp.
Govindaraju, K., Potts, P.J., Webb, P.C., Watson, J.S., 1994. Report on Whin Sill Dolerite WS-E from England and Pitscurrie Micrograbbro PM-S from Scotland: assessment by one hundred and four international laboratories. Geostandards Newsletters, 18, 211-300.
Gregory, C.J., Buick, I.A., Hermann, J., Rubatto, D., 2009. Mineral-scale Trace Element and U-Th-Pb Age Constraints on Metamorphism and Melting during the Petermann Orogeny (Central Australia). Journal of Petrology, 50(2), 251-287.
Gutiérrez-Alonso, G., Fernández-Suárez, J., Weil, A.B., 2004. Orocline triggered lithospheric delamination. In: Weil, A.B., Sussman, A. (eds.). Paleomagnetic and structural analysis of orogenic curvature. Geological Society of America, Special Paper, 383, 121-131.
Gutiérrez-Alonso, G., Fernández-Suárez, J., Jeffries, T.E., Johnston, S.T., Pastor-Galán, D., Brendan Murphy, J., Franco, M.P., Gonzalo, J.C., 2011. Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics, 30(5), TC5008.
Hirata, T., Nesbitt, R.W., 1995. U–Pb isotope geochronology of zircon: evaluation of the laser probe-inductively coupled plasma mass spectrometry technique. Geochimica et Cosmochimica Acta, 59, 2491-2500.
Kemp, A.S.I., Hawksworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M., Whitehouse, M.J., 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315, 980-983.
King, P.L., White, A.R.J., Chappel, B.W., Allen, C.M., 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3), 371-391.
Le Breton, N., Thompson, A.B., 1988. Fluid absent (dehydration) melting of biotite in metapelites in the early stages of anatexis. Contributions to Mineralogy and Petrology, 99, 226-237.
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61, 295-321.
McLeod, C.L., Davidson, J.P., Nowell, G.M., Shanaka, L.S., 2012. Disequilibrium melting during crustal anatexis and implications for modeling open magmatic systems. Geology, 40, 435-438.
Mendes, A.C., Dias, G., 2004. Mantle-like Sr–Nd isotope composition of Fe-K subalkaline granites: the Peneda-Gerês Variscan massif (NW Iberian Peninsula). Terra Nova, 16, 109-115.
Merino Martínez, E., Villaseca, C., Orejana, D., Pérez-Soba, C., Belousova, E., Andersen, T., 2014. Tracing magma sources of three different S-type peraluminous granitoid series by in situ U-Pb geochronology and Hf isotope zircon composition: The Variscan Montes de Toledo batholith (central Spain). Lithos, 200-201, 273-298.
Miao, Y., Feng, C., Zhao, Y., Daxin, L., 2015. Genesis of post-collisional calc-alkaline and alkaline granitoids in QimanTagh, East Kunlun, China. Lithos, 239, 45-59.
Montero, P., Bea, F., 1998. Accurate determination of 87Rb/86Sr and 147Sm/144Nd ratios by inductively-coupled-plasma mass spectrometry in isotope geoscience: an alternative to isotope dilution analysis. Analytica Chimica Acta, 358, 227-33.
Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38(5), 757-775.
Pérez-Estaún, A., Bea, F., 2004. Macizo Ibérico. In: Vera J.A. (ed.). Geología de España. Sociedad Geológica de España Instituto Geológico y Minero de España (SGE-IGME), Madrid, 19-230.
Pérez-Soba, C., Villaseca, C., 2010. Petrogenesis of highly fraccionated I-type peraluminous granites: La Pedriza pluton (Spanish Central System). Geologica Acta, 8(2), 131-149.
Ragland, P.C., 1989. Basic Analytical Petrology. Oxford University Press, 369pp.
Reichardt, H., Weinberg, R.F., 2012. Hornblende chemistry in meta- and diatexites and its retention in the source of leucogranites: an example from the Karakoran shear zone, NW India. Journal of Petrology, 53, 1287-1318.
Ries, A.C., 1979. Variscan metamorphism and K-Ar dates in the Variscan Fold Belt of S Brittany and NW Spain. Journal of
the Geological Society (London), 136, 89-103.
Roberts, M.P., Clemens, J.D., 1993. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology, 21, 825-828.
Rubio Pascual, F.J., Arenas, R., Martínez Catalán, J.R., Rodríguez Fernández, L.R., Wijbrans, J.R., 2013. Thickening and exhumation of the Variscan roots in the Iberian Central System: Tectonothermal processes and 40Ar/39Ar ages. Tectonophysics, 587, 207-221.
Simões, P.P., Sant’Ovaia, H., Martins, H.C.B., Dias, G., 2013. The Fe-K subalkaline Monçao-Porriño pluton (NW Portugal): genesis, fabric and SHRIMP U-Pb zircon geochronology. IX Congreso Ibérico - XI Congreso Nacional de Geoquímica, Soria (Spain), 22-23.
Smith, D.J., 2014. Clinopyroxene precursors to amphibole sponge in arc crust. Nature Communications, 5, 4329.
Spear, F.S., 1993. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineralogical Society of America, Washington D.C., 799pp.
Statacorp, 2005. Stata Statistical Software, Release 9. College Station, TX, StataCorp LP. Stevens, G., Villaros, A., Moyen, J.F., 2007. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology, 35(1), 9-12.
Sylvester, P., 1998. Post-collisional strongly peraluminous granites. Lithos, 45, 29-44.
Thompson, A.B., Connolly, J.A.D., 1995. Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. Journal of Geophysical Research, 100, 15565-15579.
Turnbull, R., Tulloch, A., Ramenazi, J., Jongens, R., 2016. Extension-facilitated pulsed S-I-A-type “flare-up” magmatism at 370Ma along southeast Gondwana margin in New Zeland: Insights from U-Pb geochronology and geochemistry. Geological Society of America Bulletin, 128(9/10), 1500-1520.
Turner, S., Sandiford, M., Foden, J., 1992. Some geodynamic and compositional constraints on “postorogenic” magmatism.
Geology, 20, 931-934.
Vielzeuf, D., Montel, J.M., 1994. Experimental constraints on partial melting in the crust. Mineralogical Magazine, 58A, 940-941.
Villaseca, C., Bellido, F., Pérez-Soba, C., Billströn, K., 2009. Multiple crustal sources for post-tectonic I-type granites in the
Hercynian Iberian belt. Mineralogy and Petrology, 96, 197-211.
Weinberg, R.F., Hasalová, P., 2015. Water-fluxed melting of the continental crust: a review. Lithos, 212-215, 158-188.
Whalen, J.B., Curry, K.L., Chappell, B.W., 1987. A-type granite: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407-419.
Wones, D.R., Eugster, H.P., 1965. Stability of biotite: experiment, theory, and application. American Mineralogist, 50, 1228-
Yenes, M., Álvarez, F., Gutiérrez-Alonso, G., 1999. Granite emplacement in orogenic compressional conditions: the La
Alberca-Bejar granitic area (Spanish Central System, Variscan Iberian Belt). Journal of Structural Geology, 21, 1419-1440.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Geologica Acta
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
Geologica Acta is the property of the UB, GEO3BCN, IDAEA and UAB. Geologica Acta must be cited for any partial or full reproduction. Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows anyone to reproduce and disseminate the content of the journal and even make derivative works crediting authorship and provenance and distributing possible derivative works under the same or an equivalent license.
Author Rights
Authors retain the copyright on their papers and are authorized to post them on their own web pages or institutional repositories. The copyright was retained by the journal from the year 2003 until 2009. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission from Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.