The Impact of carbonate cements on the reservoir quality in the Napo Fm sandstones (Cretaceous Oriente Basin, Ecuador)

Authors

  • J. Estupiñan Universidad Complutense de Madrid
  • R. Marfil Universidad Complutense de Madrid
  • A. Delgado CSIC
  • A. Permanyer Universitat de Barcelona.

DOI:

https://doi.org/10.1344/105.000000312

Keywords:

Carbonate cement, Geochemistry, Sandstone reservoirs, Oriente Basin, Ecuador

Abstract

The Napo Formation of Lower-Middle Cretaceous age in the Oriente basin, Ecuador, is an important sandstone reservoir. The formation is buried at a depth of 1500 m in the eastern part of the basin and down to 3,100 m in the western part. The sandstones display higher porosity values (av. 20%) than other reservoirs in the region. These sandstones were deposited in fluvial, transitional and marine environments, and they are fine to medium grained quartzarenites and subarkoses. The principal cements are carbonates, quartz overgrowth and kaolin, with scarce amounts of pyrite-pyrrhotite and chlorite. Carbonate cements include: Eogenetic siderite (S1), mesogenetic and post-compactional calcite, Fe-dolomite, ankerite and siderite (S2). Early siderite and chlorite helped to retain porosity by supporting the sandstone framework against compaction. Dissolution of feldspars and carbonate cements are the main mechanism for secondary porosity development during mesodiagenesis. The high intergranular volume (IGV) of the sandstones indicates that cementation is the predominant contributor to porosity loss in the reservoir and that the precipitation of the carbonate cement occurred in early and late diagenetic stages. The stable-isotope composition of the S1 siderite is consistent with precipitation from meteoric waters in fluvial sandstones, and from mixed meteoric and marine waters in transitional sandstones. The low δ18O‰ values of some of these carbonate phases reflect the replacement and recristalization from S1 to S2 siderite at deep burial and high temperature. Textural evidence, together with a low Sr content, also suggests that siderite (S1) in fluvial environment is an early cement that precipitated from meteoric waters, near the sediment/water interphase, followed by the generation of calcite with a higher Fe and Mg content. However, due to this higher Mg content, siderite S2 could have precipitated as a result of the thermal descarboxilation of the Mg rich organic matter. The progressive decrease in δ18O values in all carbonate cements could be related to the continued precipitation at different temperatures and burial depth.

Author Biographies

J. Estupiñan, Universidad Complutense de Madrid

Dpto. de Petrología y Geoquímica, Facultad de Geología.

R. Marfil, Universidad Complutense de Madrid

Dpto. de Petrología y Geoquímica, Facultad de Geología.

A. Delgado, CSIC

Estación Experimental del Zaidín (CSIC), Laboratorio de isótopos estables

A. Permanyer, Universitat de Barcelona.

Dpt. de Geoquímica, Petrologia i Prospecció Geològica, Facultat de Geologia.

References

Al-Aasm, I.S., Taylor, B.E., South, B., 1990. Stable Isotope analysis of multiple carbonate samples using selective acid extraction. Chemical Geology, 80, 119-125.

Almeida, J.P., 1986. Estudio de litofacies y del contacto agua petróleo de la Arenisca “T” del Campo Libertador. Memoria tomo III: Geología del petróleo Ingeniería de petróleos, 1, 119-148.

Baldock, J.W., 1982. Geología del Ecuador. Boletín de la explicación del mapa geológico de la República del Ecuador. Scale 1:1000.000, 66 pp.

Berner, R.A., 1980. Early Diagenesis: A theoretical Approach. New Jersey, Princeton University Press, 241 pp.

Boles, J.R., Ramseyer, K., 1987. Diagenetic carbonate in Miocene sandstone reservoir, San Joaquin Basin, California. American Association of Petroleum Geologist Bulletin, 71, 1475-1487.

Canfield, D.E., 1989. Reactive iron in Marine sediments. Geochimica and Cosmochimica Acta, 53, 619-632.

Carothers, W.W., Adam, L.H., Rosenbauer, R.J., 1988. Oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite. Geochimica and Cosmochimica Acta, 52, 2445-2450.

Christophoul, F., Rivadeneira, M., 1986. Evaluación Geoquímica de Rocas Madres de la Cuenca Amazónica Ecuatoriana. IV Congreso Ecuatoriano de Geología, Minas y Petróleos, Quito, Ecuador, Colegio de Ingenieros Geólogos de Minas y Petróleos de Pichincha, Memorias, tomo II, 78 pp.

Curtis, C.D., Coleman, M.L., 1986. Controls on the precipitation of early diagenetic calcite, dolomite, and siderite concretions in complex depositional sequences. In: Gautier, D.L. (ed.). Roles of organic matter in sediments diagenesis. Society of Economic Paleontologist and Mineralogist, Special Publication, 38, 23-33.

Dashwood, M.F., Abbotts, I.L., 1990. Aspects of the petroleum geology of the Oriente Basin, Ecuador. In: Brooks, J., (ed.). Classic petroleum provinces. Geological Society, London, Special Publication, 50, 89-117.

Debra, K.H., 2001. The Putumayo-Oriente-Marañon province of Colombia, Ecuador and Peru-Mesozoic-Cenozoic and Paleozoic Petroleum System. U.S. Geological Survey Digital Data Series, 63, 1-35.

Deer, W.A., Howie, R.A., Zussman, J., 1962. Carbonates. In: Deer, W.A., Howie, R.A., Zussman, J., (eds.). Petroleum Geochemistry and exploration of Europe. Oxford, Blackwell, 113-125.

Dott., R.H. Jr., 1964. Wacke Graywacke and matrix - What Approach to Inmature Sandstone Classification. Journal of Sedimentary Petrolology, 34, 625-632.

Ehrenberg, S.N., 1993. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite: Examples from the Norwegian continental shelf. American Association of Petroleum Geologists, 77, 1260-1286.

Fisher, Q.J., Knipe, R.J., 1998. Microstructural controls on the petrographical properties of deformation properties. In: Jones, G., Fisher, Q.J., Knipe, R.J. (eds.). Faulting and fault sealing in hydrocarbon reservoir. Geological Society, London, Special Publication, 147, 117-134.

Fischer, K.S., Surdam, R.C., 1988. Contrasting diagenetic styles in a shelf turbidite sandstone sequence: The Santa Margarita and Stevens sandstones, San Joaquin Basin, California, USA. In: Graham, A. (ed.). Studies of the Geology of the San Joaquin Basin. Society of Economic Paleontologists and Mineralogists, Pacific Section, 60, 233–247.

Galloway, W.E., 1984. Hydrogeologic regimes of sandstone diagenesis. In: McDonald D.A., Surdam, R.C. (eds.). Clastic diagenesis. American Association of Petroleum Geologist Bulletin, Memoir, 37, 3-13

García, A.J., Morad, S., De Ros, L.F., Al-Aasm, I.S., 1998. Paleogeographical, paleoclimatic and burial history controls on the diagenetic evolution of reservoir sandstone: evidence from the Lower Cretaceous Serraria sandstones in the Sergipe-Alagoas Basin, NE Brazil. In: Morad, S. (ed.). Carbonate cementation in sandstones. International Association of Sedimentology, Special Publication, 26, 107-140.

Hayes M.J., Boles, J.R., 1993. Evidence for meteoric recharge in the San Joaquín Basin, California provided by isotope and trace element chemistry of calcite. Marine and Petroleum Geology, 10, 135-144.

Heydary, E., 1997. Hydrotectonic models of burial diagenesis in platform carbonates based on formation water geochemistry in North American sedimentary basins. Society of Economic Paleontologist and Mineralogist (SEPM), Special Publication, 57, 53-79.

Houseknecht, D.W., 1987. Assessing the relative importance on compaction processes and cementation to reduction of porosity in sandstones. American Association of Petroleum Geologist, Bulletin, 71, 633-642.

Hudson, J.D., 1978. Carbon isotopes and limestone cements. Geology, 3, 19-22.

Irwin, H., 1980. Early diagenetic carbonate precipitation and pore-fluid migration in the Kimmeridge Clay of Dorset, England. Sedimentology, 27, 577-597.

Irwin, H., Curtis, Ch., Coleman, M., 1977. Isotope evidence for several sources of diagenetic carbonates formed during burial of organic-rich sediments. Nature, 269, 209-213.

Jaillard, E., 1997. Síntesis estratigráfica y sedimentológica del Cretácico y Paleógeno de la Cuenca Oriental del Ecuador. Informe final Convenio Orstom-Petroproduccion, 1, 164 pp.

Lee, Y., Boles, J.R., 1996. Depositional control on carbonate cement in the San Joaquin Basin, California. Siliciclastic diagenesis and fluid flow: Concepts and applications. Society of Economic Paleontologists and Mineralogists (SEPM), Special Publication, 55, 13-22.

Lundergard, P.D., 1992. Sandstone porosity loss—a “big picture” view of the importance of compaction. Journal of Sedimentary Petrology, 62, 250-260.

Matsumoto, R., Iijima A., 1981. Origin and diagenetic evolution of Ca-Mg-Fe carbonates in some coalfields of Japan. International Association of Sedimentologist, 28, 239-259.

Marfil, R., Delgado A., Rossi C., La Iglesia, A., Ramseyer, K., 2003. Origin and diagenetic evolution of Kaolin in reservoir sandstone and associated shales of Jurassic and Cretaceous Salam Fields, Western Desert (Egypt). In Worden, R.H., Morad, S. (eds.). Clay Mineral Cements in Sandstone. International Association Sedimentologist, Special Publication, 34, 319-342.

McAulay, G.E., Burley, S.D., Johnes, L.H., 1993. Silicate mineral authigenesis in the Hutton and NW Hutton fields: Implications for sub-surface porosity development. In: Parker, J.R. (ed.). Petroleum Geology of Northwest Europe. Proceedings of the 4th Conference. The Geological Society of London, London, 1377-1394.

Moore, S.E., Ferrell, R.E., Aharon, P., 1992. Diagenetic siderite and other Ferroan carbonates in a modern subsiding marsh sequence. Journal Sedimentary Petrology, 62, 537-366.

Morad, S., 1998. Carbonate cementation in sandstone: distribution patterns and geochemical evolution. International Association Sedimentologist, Special Publication, 26, 1-26.

Morad, S., Eshete, M., 1990. Petrology, chemistry and diagénesis of calcite concretions in Silurian shale from central Sweden. Sedimentary Geology, 66, 113-134.

Morad, S., Ketzer, J.M., De Ross, L.F., 2000. Spatial and temporal Distribution of diagenesis alteration in siliciclastic rocks: implications for mass transfer in sedimentary basin. Sedimentology, 47, 95-120.

Mozley, P.S., 1989. Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology, 17, 704-706.

Mozley, P.S., Carothers, W.W., 1992. Elemental and isotopic composition of siderite in the Kuparuk Formation, Alaska: Effect of microbial activity and water sediment interaction on early pore water chemistry. Journal of Sedimentary Petrology, 62, 681-692.

Mozley, P.S., Burns, S.J., 1993. Oxygen and carbon isotopic composition of marine carbonate concretions: An overview. Journal of Sedimentary Petrology, 63, 73-83.

O’Neil, J.R., Clayton, R.N., Mayeda, T.K., 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics, 51, 5547-5558.

Pettijohn, F.J., Potter, P.E., Siever, R., 1972. Sand and sandstone. New York, Springer-Verlag, 618 pp.

Pittman, E.D., Larese, R.E., Heald, H.T., 1992. Clay coats: Occurrence and relevance to preservation of porosity in sandstones. In: Houseknecht, D.W., Pittman, E.D. (eds.). Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones. Society of Economic Paleontologists and Mineralogist, Special Publication, 47, 241-255.

Prosser, D.J., Daws, J.A, Fallick, A.E., Williams, B.P.J., 1993. Geochemistry and diagenesis of stratabound calcite cement layers within the Rannoch Formation of the Brent Group, Murchinson, Field North Viking Graben (Northern Nort Sea). Sedimentary Geology, 87, 139-164.

Pye, K., Dickinson, J.A.D., Schiavon, N., Coleman, M.L., Cox, M., 1990. Formation of siderite-Mg-calcite-iron sulphide concretions in intertital marsh and sandflat sediments, North Norfolk, England. Sedimentology, 37, 325-343.

Rossi, C., Marfil, R., Ramseyer, K., Permanyer, A., 2001. Facies-Related diagenesis and multiphase siderite cementation and dissolution in the reservoir sandstones of the Khatatba Formation, Egyipt’s Western Desert. Journal of Sedimentary Research, 71, 459-472.

Schmidt, V., McDonald, D.A., 1979. The role of secondary porosity in the course of sandstone diagenesis. In: Scholle, A., Schluger, P.R. (eds.). Aspect of diagenesis. Society of Economic Paleontologists and Mineralogist, Special Publication, 26, 175-207.

Sheppard, S.M.F., Schwarcz, E., 1970. D/H and 18O/16O ratios of minerals of possible mantle or lower crustal origin. Earth and Planetary Science Letters, 9, 232-239.

Smith, J.T., Ehrenberg, S.N., 1989. Correlation of carbon dioxide abundances with temperature in clastic hydrocarbon reservoir: relationship to inorganic chemical equilibrium. Marine and Petroleum Geology, 6, 129-135.

White, H.J., Skopec, R., Ramirez, F., Rodas, J., Bonilla, G., 1995. Reservoir characteristics of Hollín and Napo Formations, western Oriente basin, Ecuador. In: Tankard, A.J., Suárez, S.R., Welsink, H.J. (eds.). Petroleum basin of South America. American Association of Petroleum Geologist, Memoir, 62, 573-596.

Downloads

Published

2007-01-11