Cadomian metabasites of the Eastern Pyrenees revisited


  • Núria Pujol-Solà Departament de Mineralogia, Petrologia i Geologia Aplicada. Facultat de Ciències de la Terra, Universitat de Barcelona. Carrer Martí i Franquès, s/n, 08028, Barcelona, Spain
  • Josep Maria Casas Departament de Dinàmica de la Terra i de l’Oceà. Facultat de Ciències de la Terra, Universitat de Barcelona. Carrer Martí i Franquès, s/n, 08028, Barcelona, Spain
  • Joaquín A. Proenza Departament de Mineralogia, Petrologia i Geologia Aplicada. Facultat de Ciències de la Terra, Universitat de Barcelona. Carrer Martí i Franquès, s/n, 08028, Barcelona, Spain
  • Idael F. Blanco-Quintero Departamento de Ciencias de la Tierra y del Medio Ambiente. Facultad de Ciencias, Universidad de Alicante. Carretera de San Vicente del Raspeig s/n, 03690, Alicante, Spain
  • Elena Druguet Departament de Geologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
  • Montserrat Liesa Departament de Mineralogia, Petrologia i Geologia Aplicada. Facultat de Ciències de la Terra, Universitat de Barcelona. Carrer Martí i Franquès, s/n, 08028, Barcelona, Spain
  • Manuel J. Román-Alpiste Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avda. de las Palmeras 4, E-18100 Armilla, Granada, Spain
  • J. Javier Álvaro Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, 28040 Madrid, Spain



Pan-African, Cadomian, Inherited zircon, Peri-Gondwanan, Iberian Massif


This study presents a new geochemical, petrological, and geochronological U–Pb dataset from Ediacaran metabasites of the Canigó and Cap de Creus massifs, Eastern Pyrenees. The rocks are composed of calcic amphibole + plagioclase + chlorite + epidote ± quartz plus titanite + apatite + ilmenite ± biotite ± rutile as accessory phases and show relict igneous textures. Peak pressure-temperature determinations share common conditions, ranging 452–482ºC and 5.2–7.7kbar. These intermediate P-T conditions suggest Barrovian-type metamorphism, most likely related to a collisional setting. The metabasites correspond to evolved basaltic rocks (Mg#<0.55) with moderate TiO2 content (up to 2.08wt.%) and relatively low Cr (43–416ppm). The rocks are moderately enriched in light rare earth elements (LREE) relative to heavy rare earth elements (HREE) (average (La/Lu)n of 2.7) and the N-MORB normalized multi-element patterns show negative slopes, with prominent negative Nb anomalies ((Nb/La)NMORB=0.33–0.78). These variations are akin to island arc tholeiites generated in back-arc basins and to other metabasites described in the Eastern Pyrenees with a putative Ediacaran age, and they differ from the Ordovician tholeiitic metabasites from the Canigó massif, which derived from a contaminated E-MORB source. The positive ƐNd(T) values (0.82–3.05) of the studied metabasites preclude a notable contribution from an older continental crust. U-Pb dating (LA-ICP-MS) of one chlorite-rich schist sample in contact with the metabasites from the Canigó massif yielded a main peak at ca. 632Ma. We argue that the Cadomian metabasites from the Pyrenees formed during back-arc extension in the continental margin of Gondwana and were later affected by (probably early Variscan) medium-P metamorphism before the HT-LP metamorphism classically described in the Pyrenees.


Abbo, A., Avigad, D., Gerdes, A., Güng, T., 2015. Cadomian basement and Paleozoic to Triassic siliciclastics of the Taurides

(Karacahisar dome, south-central Turkey): Paleogeographic constraints from U–Pb–Hf in zircons. Lithos, 227, 122-139. DOI:

Abbo, A., Avigad, D., Gerdes, A., Morag, N., Vainer, S., 2020. Cadomian (ca. 550 Ma) magmatic and thermal imprint on the North Arabian-Nubian Shield (south and central Israel): New age and isotopic constraints. Precambrian Research, 346, 105804. DOI:

Aguilar, C., Liesa, M., Castiñeiras, P., Navidad, M., 2014. LateVariscan metamorphic and magmatic evolution in the eastern

Pyrenees revealed by U–Pb age zircon dating. Journal of Geological Society of London, 171, 181-192. DOI:

Aguilar, C., Liesa, M., Štípská, P., Schulmann, K., Muñoz, J.A., Casas, J.M., 2015. P–T–t–d evolution of orogenic middle crust of the Roc de Frausa Massif (Eastern Pyrenees): A result of horizontal crustal flow and Carboniferous doming? Journal of Metamorphic Geology, 33(3), 273-294. DOI:

Aguilar, C., Liesa, M., Reche, J., Powell, R., 2016. Fluid-fluxed melting and melt loss in a syntectonic contact metamorphic aureole from the Variscan eastern Pyrenees. Journal of Metamorphic Geology, 34(4), 379-400. DOI:

Aiglsperger, T., Proenza, J.A., Zaccarini, F., Lewis, J.F., Garuti, G., Labrador, M., Longo, F., 2015. Platinum group minerals (PGM) in the Falcondo Ni-laterite deposit, Loma Caribe peridotite (Dominican Republic). Mineralium Deposita, 50, 105-123. DOI:

Álvaro, J.J., Casas, J.M., Clausen, S., Padel, M., Sánchez-García, T., 2018. Cadomian cycle in the Pyrenees. In: Quesada, C., Oliveira, J.T. (eds.). The Geology of Iberia: a Geodynamic Approach. Regional Geology Reviews series. Heidelberg, Springer, 566pp.

Arenas, R., Fernández-Suárez, J., Montero, P., Díez Fernández, R., Andonaegui, P., Sánchez Martínez, S., Albert, R., Fuenlabrada, J.M., Matas, J., Martín Parra, L.M., Rubio Pascual, F.J., JiménezDíaz, A., Pereira, M.F., 2018. The Calzadilla Ophiolite (SW Iberia) and the Ediacaran fore-arc evolution of the African margin of Gondwana. Gondwana Research, 58, 71-86. DOI:

Ayora, C., Casas, J.M., 1986. Strabound As-Au mineralization in pre-Caradocian rocks form the Vall de Ribes, Eastern Pyrenees, Spain. Mineralium Deposita, 21, 278-287.

Ayora, C., Liesa, M., Delgado, J., 1993. Low-thermal gradient Hercynian metamorphism in the eastern Pyrenees. Journal of Metamorphic Geology, 11, 49-58. DOI:

Barrett, T.J., MacLean, W.H., 1997. Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems. In: Barrie, C.T., Hannington, M.D. (eds.). Volcanic associated massive sulfide deposits: Processes and examples in modern and ancient settings. Reviews in economic geology, 8, 101-131. DOI:

Bendokht, M., Shabanian, N., Davoudian, A.R., Dong, Y., Cottle, J.M., Johnson, T.A., 2021. Geochronology and geochemistry of Cadomian basement orthogneisses from the Tutak metamorphic Complex, Sanandaj-Sirjan Zone, Iran. Precambrian Research, 362, 106288. DOI:

Brown, M., 2007. Metamorphic conditions in orogenic belts: A record of secular change. International Geology Review, 49,

-234. DOI:

Brown, M., 2009. Metamorphic patterns in orogenic systems and the geological record. London, The Geological Society, 318 (Special Publication), 37-74. DOI:

Carreras, J., Ramírez, J., 1984. The geological significance of the Port de la Selva Gneisses (Eastern Pyrenees, Spain). International Geoscience Programme Newsletter, 6, 27-31.

Carreras, J., Casas, J.M., 1987. On folding and shear zone development: a mesoscale structural study on the transition between two different tectonic styles. Tectonophysics, 135, 87-98. DOI:

Carreras, J., Capellà, I., 1994. Tectonic levels in the Palaeozoic basement of the Pyrenees: a review and a new interpretation.

Journal of Structural Geology, 16, 1509-1524.

Carreras, J., Debat, P. (coord), Alonso, J.L., Andrews, J.R., Autran, A., Barnolas, A., Bessière, G., Besson, M., Bodin, J., Casas, J.M., Cirés, J., Colwill, J., Delvolvé, J.J., Demange, M., Duran, H., Echtler, H., Fonteilles, M., Garcia-Sansegundo, J., Gisbert, J., Guérangé, B., Guérangé-Lozes, J., Guitard, G., Julivert, M., Lamourouz, C., Laumonier, B., Ledru, P., Liesa, M, Llac, F., Losantos, M., Majesté-Menjoulas, C., Mercier, A., Muñoz, J.A., Palau, J., Pequera, N., Poblet, M., Pouget, P., Richard, Ph., Rios, L.M., Roux, L., Schulze, M., Soldevila, J., Soula, J.C., Van den Eeckhout, B., et al., 1996. Tectonique hercynienne. In: Barnolas, A., Chiron, J.C. et al. (eds.). Synthèse Géologique et Géophysique des Pyrénées, tome 1 – Cycle Hercynien . BRGM-ITGE, 585-677.

Carreras, J., 2001. Zooming on Northern Cap de Creus shear zones. Journal of Structural Geology, 23, 1457-1486.

Carreras, J., Druguet, E., 2014. Framing the tectonic regime of the NE Iberian Variscan segment. In: Schulmann, K., Martínez Catalán, J.R., Lardeaux, J.M., Janousek, V., Oggiano, G. (eds.). The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. London, The Geological Society, 405 (Special Publications), 249-264.

Casas, J.M., Martí, J., Ayora, C., 1986. Importance du volcanisme dans la composition lithostratigraphique du Paléozoïque inférieur des Pyrénées catalanes. Comptes Rendus de l’Académie des Sciences, 302, 1193-1198.

Casas, J.M., Castiñeiras, P., Navidad, M., Liesa, M., Carreras, J., 2010. New insights into the Late Ordovician magmatism in the Eastern Pyrenees: U–Pb SHRIMP zircon data from the Canigó massif. Gondwana Research, 17, 317-324. DOI:

Casas, J.M., Palacios T., 2012. First biostratigraphical constraints on the pre–Upper Ordovician sequences of the Pyrenees based on organic-walled microfossils. Comptes Rendus Géoscience, 344, 50-56. DOI:

Casas, J.M., Navidad, M., Castiñeiras, P., Liesa, M., Aguilar, C., Carreras, J., Hofmann, M., Gärtner, A., Linnemann, U., 2015. The Late Neoproterozoic magmatism in the Ediacaran series of the Eastern Pyrenees: new ages and isotope geochemistry. International Journal of Earth Sciences, 104, 909-925. DOI:

Casas, J.M., Murphy, J.B., 2018. Unfolding the arc: The use of preorogenic constraints to assess the evolution of the Variscan

belt in Western Europe. Tectonophysics, 736, 47-61. DOI:

Castiñeiras, P., Navidad, M., Liesa, M., Carreras, J., Casas, J.M., 2008. U–Pb zircon ages (SHRIMP) for Cadomian and Early Ordovician magmatism in the Eastern Pyrenees: New insights into the pre-Variscan evolution of the northern Gondwana margin. Tectonophysics, 461, 228-239. DOI:

Castro, A., Corretgé, L.G., Martínez, F.J., Pascual, E., Lago, M., Arranz, E., Galé, C., Fernández, C., Donaire, T., López, S., 2002. Palaeozoic Magmatism. In: Gibbons, W., Moreno, T. (eds.). The Geology of Spain. London, The Geological Society, 118-153. DOI:

Cavet, P. 1957. Le Paléozoïque de la zone axiale des Pyrénées orientales françaises entre le Roussillon et l’Andorre. Bulletin du Service de la Carte géologique de France, 55, 303-518.

Cocherie, A., Baudin, Th., Autran, A., Guerrot, C., Fanning, C.M, Laumonier, B., 2005. U-Pb zircon (ID-TIMS and SHRIMP) evidence for the early Ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). Bulletin de la Société Géologique de France, 176, 269-282. DOI:

Díez Fernández, R., Martínez Catalán, J.R., Gerdes, A., Abati, J., Arenas, R., Fernández-Suárez, J., 2010. U–Pb ages of detrital zircons from the Basal allochthonous units of NW Iberia: Provenance and paleoposition on the northern margin of Gondwana during the Neoproterozoic and Paleozoic. Gondwana Research, 18(2-3), 385-399. DOI:

Druguet, E., 2001. Development of high thermal gradients by coeval transpression and magmatism during the Variscan

orogeny: insights from the Cap de Creus (Eastern Pyrenees). Tectonophysics, 332, 275-293. DOI:


Escuder-Viruete, J., Díaz de Neira, A., Hernáiz Huerta, P.P., Monthel, J., Senz, J.G., Joubert, M., Lopera, E., Ullrich, T., Friedman, R., Mortensen, J., Pérez-Estaún, A., 2006. Magmatic relationships and ages of Caribbean Island arc tholeiites, boninites and related felsic rocks, Dominican Republic. Lithos, 90(3-4), 161-186. DOI:

Fiannacca, P., Williams, I.S., Cirrincione, R., Pezzino, A., 2013.

The augen gneisses of the Peloritani Mountains (NE Sicily): Granitoid magma production during rapid evolution of the northern Gondwana margin at the end of the Precambrian. Gondwana Research, 23(2), 782-796. DOI:

Floyd, P.A., Kelling, G., Gökçen, S.L., Gökçen, N., 1991. Geochemistry and tectonic environment of basaltic rocks from the Misis ophiolitic mélange, south Turkey. Chemical Geology, 89, 263-280. DOI:

Gibson, R.L., 1989. The relationship between deformation and metamorphism in the Canigou massif, Pyrenees: a case study. Geologie en Mijnbouw, 68(3), 345-356.

Gibson, R.L., 1992. Sequential, syndeformational porphyroblast growth during Hercynian low-pressure/high-temperature metamorphism in the Canigou massif. Pyrenees Journal of Metamorphic Geology, 10(5), 637-650. DOI:

Gibson, R.L., Bickle, M.J., 1994. Thermobarometric constraints on the conditions of metamorphism in the Canigou massif, Pyrenees: implications for Hercynian geothermal gradients. Journal of the Geological Society, 151, 987-997. DOI: https://

Govindaraju, K., 1994. 1994 compilation of working values and sample descriptions for 383 geostandards. Geostandards

Newsletters, 18, 1-158. DOI:

Govindaraju, K., Potts, P.J., Webb, P.C., Watson, J.S., 1994. 1994 Report on Whin Sill Dolerite WS-E from England and Pitscurrie Micrograbbro PM-S from Scotland: assessment by one hundred and four international laboratories. Geostandards Newsletters, 18, 211-300. DOI:

Guitard, G., Laffitte, F., 1956. Sur l’importance et la nature des manifestations volcaniques dans le Paléozoïque des Pyrénées Orientales. Comptes Rendus de l’Académie des Sciences, 242, 2749-2752.

Guitard, G., 1965. Associations minerales, subfacies et types de metamorphisme dans les micaschistes et les gneiss pelitiques du massif du Canigou (Pyrenees-Orientales). Bulletin de La Société Géologique de France, S7-VII(3), 356-382. DOI:

Guitard, G., 1970. Le métamorphisme hercynien mésozonal et les gneiss œillés du massif du Canigou (Pyrénées orientales). Mémoires du Bureau de Recherches Géologiques et Minières, 63, 1-353.

Guitard, G., Vielzeuf, D., Martinez, F., Alias, G., Autran, A., Besson, M., Carreras, J., Dahmani, A., Debat, P., Driouch, Y., Druet, E., Guitard, G., Liesa, M., Mercier, A., Pouget, P., Reche-Estrada, J., Roux, L., Vaquer, R., 1996. Métamorphisme hercynienne.

In: Barnolas, A., Chiron, J.C. (eds.). Synthèse Géologique et Géophysique des Pyrénées, tome 1 – Cycle Hercynien. BRGM-ITGE, 501-584.

Gutiérrez-Alonso, G., FernándezSuárez, J., Jeffries, T.E., 2004. Age and setting of the Upper Neoproterozoic Narcea Antiform volcanic rocks (NW Iberia). Geogaceta, 25, 79-82.

Hanson, G.N., Langmuir, C.H., 1978. Modelling of major elements in mantle-melt systems using trace element approaches.

Geochimica et Cosmochimica Acta, 42(6), 725-741. DOI:

Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., Welch, M.D., 2012. IMA report: Nomenclature of the amphibole supergroup. American Mineralogist, 97, 2031-2048. DOI:

Hey, M.H., 1954. A new review of the chlorites. Mineralogical Magazine, 30, 277-292. DOI:

Holland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309-343.

Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5), 523–548. DOI:

Ishizuka, O., Tani, K., Reagan, M.K., Kanayama, K., Umino, S., Harigane, Y., Sakamoto, I., Miyajima, Y., Yuasa, M., Dunkley, D.J., 2011. The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth and Planetary Science Letters, 306(3-4), 229-240. DOI:

Jacobsen, S.B., Wasserburg, G.J., 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50, 139-


Kroner, A., Stern, R.J., 2005. Pan-African Orogeny. Encyclopedia of Geology, 1-12. DOI:


Lázaro, C., García-Casco, A., Blanco-Quintero, I.F., RojasAgramonte, Y., Corsini, M., Proenza, J.A., 2015. Did the Turonian–Coniacian plume pulse trigger subduction initiation in the Northern Caribbean? Constraints from 40Ar/39Ar dating of the Moa-Baracoa metamorphic sole (eastern Cuba). International Geology Review, 57, 919-942. DOI:

Leake, B.E., Wooley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kish, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61(405), 295-310. DOI:

Liesa, M., Carreras, J., 1989. On the structure and metamorphism of the Roc de Frausa Massif, Eastern Pyrenees. Geodinamica Acta, 3(2), 149-161.

Liesa, M., Aguilar, C., Castro, A., Gisbert, G., Reche, J., Muñoz, J.A., Vilà, M., 2021. The role of mantle and crust in the generation of calc-alkaline Variscan magmatism and its tectonic setting in the Eastern Pyrenees. Lithos, 406-407, 106541. DOI:

Losantos, M., Palau, J., Carreras, J., Druguet, E., Santanach, P., Cirés, J., 1997. Mapa geològic de Catalunya, Escala 1:25.000. Barcelona (España), Fulls: Roses 259-1-1, Cap de Creus, 259-2-1, Far de Roses 259-1-2, Institut Cartogràfic de Catalunya (ICC).

Lugmair, G.W., Marti, K., 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39, 349-357. DOI:

de Marien, L.H., Le Bayon, B., Pitra, P., Van Den Driessche, J., Poujol, M., Cagnard, F., 2019. Two-stage Variscan metamorphism in the Canigou massif: Evidence for crustal thickening in the Pyrenees. Journal of Metamorphic Geology,

(6), 863-888. DOI:

Martínez, F.J., Rolet, J., 1988. Late Paleozoic metamorphism in the Northwestern Iberian Peninsula, Brittany and related areas in South-West Europe. In: Harris, I.J., Fettes, D.J. (eds.). The Caledonian-Appalachian Orogen. London, The Geological

Society, 38(1, Special Publications), 611-620. DOI:

Martínez, F.J., Dietsch, C., Aleinikoff, J., Cirés, J., Arboleya, M.L., Reche, J., Gómez-Gras, D., 2016. Provenance, age, and tectonic evolution of Variscan flysch, southeastern France and northeastern Spain, based on zircon geochronology. Geological Society of America Bulletin, 128, 842-859. DOI:

Matte, P., Mattauer, M., 1987. Hercynian orogeny in the Pyrenees was not a rifting event. Nature, 325, 739-740. DOI: https://

Meert, J.G., Lieberman, B.S., 2008. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation. Gondwana Research, 14(1-2), 5-21. DOI:

Mezger, J.E., 2010. Cadomian, Ordovician and Variscan igneous events preserved in gneiss domes of the Central Pyrenean

Axial Zone. 13. Symposium “Tektonik, Struktur- und Kristallingeologie” (TSK 13), Frankfurt, April 6-12, 2010, Conference abstracts and field guides, 40.

Mezger, J., Gerdes, A., 2016. Early Variscan (Visean) granites in the core of central Pyrenean gneiss domes: implications from laser ablation U–Pb and Th–Pb studies. Gondwana Research, 29, 181-198. DOI:

Micheletti, F., Barbey, P., Fornelli, A., Piccarreta, G., Deloule, E., 2007. Latest Precambrian to Early Cambrian U-Pb zircon ages of augen gneisses from Calabria (Italy), with inference to the Alboran microplate in the evolution of the peri-Gondwana terranes. International Journal of Earth Sciences, 96, 843-860. DOI:

Moghadam, H.S., Khademi, M., Hu, Z., Stern, R.J., Santos, J.F., Wu, Y., 2015. Cadomian (Ediacaran–Cambrian) arc magmatism

in the ChahJam–Biarjmand metamorphic complex (Iran): magmatism along the northern active margin of Gondwana. Gondwana Research, 27, 439-452. DOI:

Moghadam, H.S., Griffin, W.L., Li, X.H., Santos, J.F., Karsli, O., Stern, R.J., Ghorbani, G., Gain, S., Murphy, R., O’Reilly, S.Y., 2017. Crustal evolution of NW Iran: Cadomian arcs, Archean fragments and the Cenozoic magmatic flare-up. Journal of Petrology, 58(11), 2143-2190. DOI:

Montero, P., Bea, F., 1998. Accurate determination of 87Rb/86Sr and 147Sm/144Nd ratios by inductively-coupled-plasma mass spectrometry in isotope geoscience: An alternative to isotope dilution analysis. Analytica Chimica Acta, 358, 227-233.


Muñoz, J.A., 1992. Evolution of a continental collision belt: ECORSPyrenees crustal balanced cross-section. In: Mc Clay, K.R. (eds.).

Thrust Tectonics. London, Chapman & Hall, 235-246. Nance, R.D., Gutiérrez-Alonso, G., Keppie, J.D., Linnemann, U., Murphy, J.B., Quesada, C., Strachan, R.A., Woodcock, N.H., 2010. Evolution of the Rheic Ocean. Gondwana Research, 17(2-3), 194-222. DOI:

Navidad, M., Carreras, J., 1995. Pre-Hercynian magmatism in the eastern Pyrenees (Cap de Creus and Albera Massifs) and its geodynamical setting. Geologie en Mijnbouw, 74, 65-77.

Navidad, M., Carreras, J., 2002. El volcanismo de la base del Paleozoico Inferior del Canigó (Pirineos Orientales). Evidencias geoquímicas de la apertura de una cuenca continental. Geogaceta, 32, 91-94.

Navidad, M., Castiñeiras, P., Casas, J.M., Liesa, M., Fernández Suárez, J., Barnolas, A., Carreras, J., Gil-Peña, I., 2010. Geochemical characterization and isotopic age of Caradocian magmatism in the northeastern Iberian Peninsula: Insights into the Late Ordovician evolution of the northern Gondwana margin. Gondwana Research, 17, 325-337. DOI: https://doi.


Navidad, M., Castiñeiras, P., Casas, J.M., Liesa, M., Belousova, E., Proenza, J., Aiglsperger, T., 2018. Ordovician magmatism

in the Eastern Pyrenees: Implications for the geodynamic evolution of northern Gondwana. Lithos, 314-315, 479-496. DOI:

Ouabid, M., Garrido, C.J., Ouali, H., Harvey, J., Hidas, K., Marchesi, C., Acosta-Vigil, A., Dautria, J.M., el Messbahi, H., RománAlpiste, M.J., 2020. Late Cadomian rifting of the NW Gondwana margin and the reworking of Precambrian crust – evidence from bimodal magmatism in the early Paleozoic Moroccan Meseta. International Geology Review, 63(16), 2013-2036. DOI:

Padel, M., Álvaro, J.J., Casas, J.M., Clausen, S., Poujol, M., Sánchez-García, T., 2018a. Cadomian volcanosedimentary complexes across the Ediacaran–Cambrian transition of the Eastern Pyrenees, southwestern Europe. International Journal of Earth Sciences, 107, 1579-1601. DOI:

Padel, M., Clausen, S., Álvaro, J.J., Casas, J.M., 2018b. Review of the Ediacaran–Lower Ordovician (pre–Sardic) stratigraphic

framework of the Eastern Pyrenees, southwestern Europe. Geologica Acta, 16(4), 339-355.

DePaolo, D.J., Wasserburg, G.J., 1976. Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3, 249-252. DOI:

DePaolo, D.J., 1981. Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic. Nature, 291, 193-196. DOI:

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508-2518. DOI:

Pearce, J.A., 1996. Sources and setting of granitic rocks. Episodes, 19(4), 120-125. DOI:

Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14-48. DOI:

Pearce, J.A., 2014. Immobile element fingerprinting of ophiolites. Elements, 10(2), 101-108. DOI:

Pereira, M., Castro, A., Chichorro, M., Fernández, C., DíazAlvarado, J., Martí, J., Rodríguez, C., 2014. Chronological link between deep-seated processes in magma chambers and eruptions: Permo–Carboniferous magmatism in the core of Pangaea (Southern Pyrenees). Gondwana Research, 25, 290-308. DOI:

Pouchou, J.L., Pichoir, F., 1991. Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PAP.” Electron Probe Quantitation, 31-75. DOI:

Powell, R., Holland, T.J.B., 1994. Optimal geothermometry and geobarometry. American Mineralogist, 79, 120-133.

von Raumer, J.F., Stampfli, G.M., 2008. The birth of the Rheic Ocean — Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics, 461(1-4), 9-20. DOI:

von Raumer, J.F., Stampfli, G.M., Arenas, R., Sánchez Martínez, S., 2015. Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation. International Journal of Earth Sciences, 104, 1107-1121. DOI:

Reagan, M.K., Ishizuka, O., Stern, R.J., Kelley, K.A., Ohara, Y., Blichert-Toft, J., Bloomer, S.H., Cash, J., Fryer, P., Hanan, B.B., Hickey-Vargas, R., Ishii, T., Kimura, J.I., Peate, D.W., Rowe, M.C., Woods, M., 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochemistry, Geophysics, Geosystems, 11(3), 1-17. DOI: ttps://

Reche, J., Carreras, J., Druguet, E., 1996. Métamorphisme Hercynien: Le massif du Cap de Creus. In: Barnolas, A., Chiron, J.C. (eds.). Synthèse géologique et gèophisique des Pyrénées. Orleans-Madrid, Bureau de Recherches Géologiques et Minières - Instituto Tecnológico Geominero de España, 1, 524-530.

Ribeiro, M.L., Reche, J., López-Carmona, A., Aguilar, C., Bento dos Santos, T., Chichorro, M., Dias da Silva, Í., Díez-Montes, A., González-Clavijo, E., Gutiérrez-Alonso, G., Leal, N., Liesa, M., Martínez, F.J., Mateus, A., Mendes, M.H., Moita, P., Pedro, J., Quesada, C., Santos, J.F., Solá, A.R., Valverde-Vaquero, P., 2019. Variscan Metamorphism. In: Quesada, C., Oliveira, J. (eds.). The Geology of Iberia: A Geodynamic Approach. Regional Geology Reviews. Springer, Cham, 431-495. DOI:

Rodriguez-Corcho, A.F., Rojas-Agramonte, Y., Barrera-Gonzalez, J.A., Marroquin-Gomez, M.P., Bonilla-Correa, S., IzquierdoCamacho, D., Delgado-Balaguera, S.M., Cartwright-Buitrago, D., Muñoz-Granados, M.D., Carantón-Mateus, W.G., CorralesGarcía, A., Laverde-Martinez, A.F., Cuervo-Gómez, A., Rodriguez-Ruiz, M.A., Marin-Jaramillo, J.P., Salazar-Cuellar, N., Esquivel-Arenales, L.C., Daroca, M.E., Carvajal, A.S., Perea-Pescadora, A.M., Solano-Acosta, J.D., Diaz, S., Guillen, A., Bayona, G., Cardona-Molina, A., Eglington, B., Montes, C., 2020. The Colombian geochronological database (CGD). International Geology Review, 64(12), 1635-1669. DOI:, A.F., actions-user, 2021. andresrcorcho/CGD_HistogramsApp: HistogramsApp_1.3 (Version 1.3): Zenodo. DOI:

Rojo-Pérez, E., Arenas, R., Fuenlabrada, J.M., Sánchez Martínez, S., Martín Parra, L.M., Matas, J., Pieren, A.P., Díez Fernández,

R., 2019. Contrasting isotopic sources (Sm-Nd) of Late Ediacaran series in the Iberian Massif: Implications for the Central Iberian-Ossa Morena boundary. Precambrian Research, 324, 194-207. DOI:

Rojo-Pérez, E., Fuenlabrada, J.M., Linnemann, U., Arenas, R., Sánchez Martínez, S., Díez Fernández, R., Martín Parra, L.M., Matas, J., Andonaegui, P., Fernández-Suárez, J., 2021. Geochemistry and Sm–Nd isotopic sources of Late Ediacaran siliciclastic series in the Ossa–Morena Complex: Iberian–Bohemian correlations. International Journal of Earth Sciences, 110(2), 467-485. DOI:

Rojo-Pérez, E., Linnemann, U., Hofmann, M., Fuenlabrada, J.M., Zieger, J., Fernández-Suárez, J., Andonaegui, P., Sánchez Martínez, S., Díez Fernández, R., Arenas, R., 2022. U-Pb geochronology and isotopic geochemistry of adakites and related magmas in the Ediacaran arc section of the SW Iberian Massif: The role of subduction erosion cycles in peri-Gondwanan arcs. Gondwana Research, 109, 89-112. DOI:

Ross, P.S., Bédard, J.H., 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from traceelement discriminant diagrams. Canadian Journal of Earth Sciences, 46(11), 823-839. DOI:

Rubio-Ordóñez, A., Gutiérrez-Alonso, G., Valverde-Vaquero, P., Cuesta, A., Gallastegui, G., Gerdes, A., Cárdenes, V., 2015. Arc-related Ediacaran magmatism along the northern margin of Gondwana: Geochronology and isotopic geochemistry from northern Iberia. Gondwana Research, 27, 216-227. DOI:

Sánchez-Lorda, M.E., Sarrionandia, F., Ábalos, B., Carrracedo, M., Eguíluz, L., Gil-Ibarguchi, J.I., 2014. Geochemistry and paleotectonic setting of Ediacaran metabasites from the OssaMorena Zone (SW Iberia). International Journal of Earth Sciences, 103, 1263-1286. DOI:

Sánchez-Lorda, M.E., Ábalos, B., García de Madinabeitia, S., Eguíluz, L., Gil-Ibarguchi, J.I., Paquette, J.L., 2016. Radiometric discrimination of pre-Variscan amphibolites in the Ediacaran Serie Negra (Ossa-Morena Zone, SW Iberia). Tectonophysics, 681, 31-45. DOI:

Santanach, P.F., 1972. Estudio tectónico del Paleozoico inferior del Pirineo entre la Cerdaña y el río Ter. Acta Geologica Hispanica, 7(2), 44-49.

Shervais, J.W., 2022. The petrogenesis of modern and ophiolitic lavas reconsidered: Ti-V and Nb-Th. Geoscience Frontiers, 13(2), 101319. DOI:

Sláma, J., Košler, J., Pedersen, R.B., 2008. Behaviour of zircon in high-grade metamorphic rocks: evidence from Hf isotopes,

trace elements and textural studies. Contributions to Mineralogy and Petrology, 154(3), 335-356. DOI:

Soula, J.C., 1982. Characteristics and mode of emplacement of gneiss domes and plutonic domes in central-eastern Pyrenees. Journal of Structural Geology, 4(3), 313-342. DOI:

Spear, F.S., 1993. Metamorphic phase equilibria and pressuretemperature-time paths. Washington DC, Mineralogical Society of America. 799p.

Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. London, The Geological Society, 42(1, Special Publications), 313-345. DOI:

Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., Dragusanu, C., 2000. JNdi-1: a neodymium isotopic reference in consistency with La Jolla neodymium. Chemical Geology, 168, 279-281. DOI:

Torró, L., Proenza, J.A., Marchesi, C., Garcia-Casco, A., Lewis, J.F., 2017. Petrogenesis of meta-volcanic rocks from the Maimón Formation (Dominican Republic): Geochemical record of the nascent Greater Antilles paleo-arc. Lithos, 278-281, 255-273. DOI:

Tournaire Guille, B., Olivier, P., Paquette, J.-L., Bosse, V., Guillaume, D., 2019. Evolution of the middle crust of the Pyrenees during the Paleozoic: new data on the plutonic rocks from the North Pyrenean Agly Massif. International Journal of Earth Sciences, 108, 245-265. DOI:

Villaseca, C., Castiñeiras, P., Orejana, D., 2015. Early Ordovician metabasites from the Spanish Central System: A remnant of

intraplate HP rocks in the Central Iberian Zone. Gondwana Research, 27, 392-409. DOI:

Villaseca, C., Orejana, D., Higueras, P., Pérez-Soba, C., García Serrano, J., Lorenzo, S., 2022. The evolution of the subcontinental mantle beneath the Central Iberian Zone: Geochemical tracking of its mafic magmatism from the Neoproterozoic to the Cenozoic. Earth-Science Reviews, 228, 103997. DOI:

Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.


Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C., Spiegel, W., 1995. Three

natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1), 1-23. DOI:

Williams, I.S., Fiannacca, P., Cirrincione, R., Pezzino, A., 2012. Peri-Gondwanan origin and early geodynamic history of NE Sicily: A zircon tale from the basement of the Peloritani Mountains. Gondwana Research, 22, 855-865. DOI:

Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products

using immobile elements. Chemical Geology, 20, 325-343. DOI:

Wood, D.A., 1980. The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50, 11-30. DOI:

Yilmaz Şahin, S., Aysal, N., Güngör, Y., Peytcheva, I., Neubauer, F., 2013. Geochemistry and U–Pb zircon geochronology of metagranites in Istranca (Strandja) Zone, NW Pontides, Turkey: Implications for the geodynamic evolution of Cadomian orogeny. Gondwana Research, 26, 755-771. DOI:

Zwart, H.J., 1962. On the determination of polymetamorphic mineral associations, and its application to the Bosost Area (Central Pyrenees). Geologische Rundschau, 52(1), 38-65. DOI:

Zwart, H.J., 1979. The Geology of the Central Pyrenees. Leidse Geologische Mededelingen, 50, 1-74.






The panafrican and cadomian orogenies in North Africa and western Europe