Genesis and petrology of Late Neoproterozoic pegmatites and aplites associated with the Taba metamorphic complex in southern Sinai, Egypt
DOI:
https://doi.org/10.1344/GeologicaActa2016.14.3.2Keywords:
Arabian-Nubian shield, Sinai, Post-collisional, A-type rocks, Lithospheric delaminationAbstract
We present new field, petrographical, mineralogical and geochemical data from late Neoproterozoic pegmatites and aplites in southern Sinai, Egypt, at the northernmost limit of the Arabian-Nubian Shield. The pegmatites cross-cut host rocks in the Taba Metamorphic Complex (TMC) with sharp contacts and are divided into massive and zoned pegmatites. Massive pegmatites are the most common and form veins, dykes and masses of variable dimensions; strikes range mainly from E-W through NW-SE to N-S. Mineralogically, the massive pegmatites are divided into K-feldspar-rich and albite-rich groups. Zoned pegmatites occur as lenses of variable dimensions, featuring a quartz core, an intermediate zone rich in K-feldspars and an outer finer-grained zone rich in albite. All compositions are highly evolved and display geochemical characteristics of post-collisional A-type granites: high SiO2, Na2O+K2O, FeO*/MgO, Ga/Al, Zr, Nb, Ga and Y alongside low CaO, MgO, Ba and Sr. They are rich in Rare Earth Elements (REE) and have extreme negative Eu anomalies (Eu/Eu*= 0.03–0.09). A genetic linkage between the pegmatites, aplites and alkali granite is confirmed by their common mild alkaline affinity and many other geochemical characteristics. These pegmatites and aplites represent the last small fraction of liquid remaining after extensive crystallization of granitic magma, injected along the foliation and into fractures of the host metamorphic rocks. The extensional tectonic regime and shallow depth of emplacement are consistent with a post-collisional environment.References
Abdalla, H.M., El-Afandy, A.H., 2003. Contrasting mineralogical and geochemical characteristics of two A-type pegmatite fields, Eastern Desert Egypt. Egyptian Mineralogist, 15, 287-328.
Abdel-Karim, A.M., 2013. Petrology, geochemistry and petrogenetic aspects of Younger gabbros from south Sinai: a transition from arc to active continental margin. Chemie der Erde, 73, 89-104.
Abu El-Enen, M.M., 2000. Origin of Wadi El-Mahash Younger Granites, SE Sinai, Egypt. In: Abdel Aziz, S.Y. (ed.). Proceedings 5th International Conference Arab World I. Cairo University, 133-148.
Abu El-Enen, M.M., Zalata, A.A., El-Metwally, A.A., Okrusch, M., 1999. Orthogneisses from the Taba metamorphic belt, SE Sinai, Egypt: witnesses for granitoid magmatism at an active continental margin. Neues Jahrbuch Mineralogie Abhandlungen, 175, 53-81.
Abu El-Enen, M.M., Will, T.M., Okrusch, M., 2004. P-T evolution of the Pan-African Taba metamorphic belt, Sinai, Egypt: Constraints from metapelitic mineral assemblages. Journal of African Earth Sciences, 38, 59-78.
Ali, K.A., Azer, M.K., Gahlan, H.A., Wilde, S.A., Samuel, M.D., Stern, R.J., 2010. Age constraints on the formation and emplacement of Neoproterozoioc ophiolites along the Allaqi-Heiani suture, South Eastern Desert of Egypt. Gondwana Research, 18, 583-595.
Avigad, D., Gvirtzman, Z., 2009. Late Neoproterozoic rise and fall of the northern Arabian-Nubian shield: The role of lithospheric mantle delamination and subsequent thermal subsidence. Tectonophysics, 477, 217-228.
Azer, M.K., 2006. The petrogenesis of late Precambrian felsic alkaline magmatism in South Sinai, Egypt. Acta Geologica Polonica, 56, 463-484.
Azer, M.K., 2013. Late Ediacaran (605-580Ma) post-collisional alkaline magmatism in the Arabian-Nubian Shield: a case study of Serbal ring-shaped intrusion, southern Sinai, Egypt. Journal of Asian Earth Sciences, 77, 203-223.
Azer, M.K., El-Gharbawy, R.I., 2011. Contribution to the Neoproterozoic layered mafic-ultramafic intrusion of Gabal Imleih, South Sinai, Egypt: Implication of post-collisional magmatism in the north Arabian-Nubian Shield. Journal of African Earth Sciences, 60, 253-272.
Azer, M.K., Farahat, E.S., 2011. Late Neoproterozoic volcanosedimentary succession of Wadi Rufaiyil, southern Sinai, Egypt: a case of transition from late- to post-collisional magmatism. Journal of Asian Earth Science, 42, 1187-1203.
Azer, M.K., Stern, R.J., Kimura, J.-I., 2010. Origin of a Late Neoproterozoic (605±13Ma) intrusive carbonate-albitite complex in Southern Sinai, Egypt. International Journal of Earth Sciences, 99, 245-267.
Azer, M.K., Obeid, M.A., Ren, M., 2014. Geochemistry and petrogenesis of late Ediacaran (580-605Ma) post-collisional alkaline rocks from Katherina Ring complex, south Sinai., Egypt. Journal of Asian Earth Sciences, 93, 229-252.
Be’eri-Shlevin, Y., Katzir, Y., Whitehouse, M., 2009. Post-collisional tectono-magmatic evolution in the northern Arabian-Nubian Shield (ANS): Time constraints from ion-probe U-Pb dating of
zircon. Journal of Geological Society of London, 166, 71-85.
Be’eri-Shlevin, Y., Samuel, M.D., Azer, M.K., Rämö, O.T., Whitehouse, M.J., Moussa, H.E., 2011. The late Neoproterozoic Ferani and Rutig volcano-sedimentary successions of the northernmost Arabian-Nubian Shield (ANS): New insights from zircon U-Pb geochronology,
geochemistry and O-Nd isotope ratios. Precambrian Research, 188, 21-44.
Bentor, Y.K., 1985. The crustal evolution of the Arabo-Nubian Massif with special reference to Sinai Peninsula. Precambrian Research, 28, 1-74.
Bielski, M., 1982. Stages in the evolution of the ArabianNubian Massif in Sinai. Ph.D. Thesis. Jerusalem, Hebrew University, 155pp.
Bonin, B., 2004. Do coeval mafic and felsic magmas in postcollisional to within- plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 78, 1-24.
Bonin, B., 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97, 1-29.
Černŷ, P., 1991. Rare-element granitic pegmatites. Part 1: Anatomy and internal evolution of pegmatite deposits. Part 2: Regional to global environments and petrogenesis. Geoscience Canada, 18, 49-81.
Černŷ, P., 2005. REE-Enriched Granitic Pegmatites, In: Linnen, R.L., Sampson, I.M. (eds.). Rare-Element Geochemistry and Mineral Deposits. Geological Association of Canada (GAC), Short Course Notes, 17, 175-199.
Černŷ, P., Ercit, T.S., 2005. Classification of granitic pegmatites revisited. Canadian Mineralogist, 43, 2005-2026. Chakoumakos, B.C., Lumpkin, G.R., 1990. Pressuretemperature constraints on the crystallization of the Harding pegmatite, Taos County, New Mexico. Canadian Mineralogist, 28, 287-298.
Chappell, B.W., White, A.J.R., 1974. Two contracting granite types. Pacific Geology, 8, 173-174.
Chappell, B.W., White, A.J.R., 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48, 489-499.
Charoy, B., Chaussidon, M., Le Carlier De Veslud, C., Duthoud, J.L., 2003. Evidence of Sr mobility in and around the albite-lepidolite-topaz granite of Beauvoir (France): an in situ ion and electron probe study of secondary Sr-rich phosphates. Contribution to Mineralogy and Petrology, 145, 673-690.
Cosca, M.A., Shimron, A., Caby, R., 1999. Late Precambrian metamorphism and cooling in the Arabian-Nubian Shield: petrology and 40Ar/39Ar geochronology of metamorphic rocks of the Elat area (southern Israel). Precambrian Research, 98, 107-127.
Cox, G., Lewis, C.J., Collins, A.S., Nettle, D., Halverson, G.P., Foden, J., Kattan, F., Jourdan, F., 2012. Ediacaran Terrane accretion in the Arabian Nubian Shield. Gondwana Research, 21, 341-352.
De la Roche, H., Leterrier, J., Grandclaude, P., Marchal, M., 1980. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major-element analyses: Its relation with current nomenclature. Chemical Geology, 29, 183-210.
Deer, W.A., Howie, R.A., Zussman, J., 1992. An introduction to the rock forming minerals. London, Longman Scientific and Technical, Second Edition, 696pp.
Dill, H.G., 2015. Pegmatites and aplites: Their genetic and applied ore geology. Ore Geology Reviews, 69, 417-561.
El-Sheshtawi, Y.A., Aly, M.M., Ahmed, A.M., 1988.Geochemistry and tectonic environments of the granitepegmatite dykes around Wadi El Marach area, Sinai, Egypt. Mansoura Science Bulletin, 1592, 205-226.
Ercit, T.S., 2004. REE-enriched granitic pegmatites. Rare element geochemistry and ore deposits. In: Linnen, R.L., Samson, I.M. (eds.). Short Course Notes, 17. Geological Association
of Canada, 257-296.
Essawy, M.A., El-Metwally, A.A., Althaus, E., 1997. Pan-African layered mafic-ultramafic-mafic cumulate complex in the SW Sinai massif: mineralogy, geochemistry and crustal growth. Chemie der Erde, 57, 137-156.
Evensen, N.M., Hamilton, P.J., O’Nions, R.K., 1978. Rare earth abundances in chondritic meteorites. Geochimica Cosmochimica Acta, 42, 1199-1212.
Eyal, Y., 1980. The geological history of the Precambrianmetamorphic rocks between Wadi Twaiba and Wadi UmMara, NE Sinai. Israel Journal of Earth Sciences, 29, 53-66.
Eyal, Y., Amit, O., 1984. The Magrish Migmatites (Northeastern Sinai) and their genesis by metamorphic differentiation triggered by a change in the strain orientation. Israel Journal of Earth Sciences, 33, 188-200.
Eyal, M., Bartov, Y., Shimron, A.E., Bentor, Y.K., 1980. Sinai geological map, aeromagnetic map. Scale: 1:500 000, Survey of Israel, 1 sheet.
Eyal., Y., Eyal., M., Kröner., A., 1991. Geochronology of the Elat Terrain, metamorphic basement, and its implication for crustal evolution of the NE Part of the Arabian-Nubian Shield. Israel Journal of Earth Science, 40, 5-16.
Eyal, M., Litvinovsky, B.A., Katzir, Y., Zanvilevich, A.N., 2004. The Pan-African high- K calc-alkaline peraluminous Elat granite from the southern Israel: geology, geochemistry and petrogenesis. Journal of African Earth Science, 40, 115-136.
Eyal, M., Litvinovsky, B., Jahn, B.M., Zanvilevich, A., Katzir, Y., 2010. Origin and evolution of post-collisional magmatism: coeval Neoproterozoic calc-alkaline and alkaline suites of the Sinai Peninsula. Chemical Geology, 269, 153-179.
Eyal, M., Be’eri-Shlevin, Y., Eyal, Y., Whitehouse, M.J., Litvinovsky, B., 2014. Three successive Proterozoic island arcs in the Northern Arabian-Nubian Shield: Evidence from SIMS U-Pb dating of zircon. Gondwana Research, 25, 338-351.
Farahat, E.S., Azer, M.K., 2011. Post-collisional magmatism in the northern Arabian-Nubian Shield: the geotectonic evolution of the alkaline suite at Gebel Tarbush area, South Sinai, Egypt. Chemie der Erde, 71, 247-266.
Friz-Töpfer, A., 1991. Geochemical characterization of Pan-African dyke swarms in southern Sinai: from continental margin to intraplate magmatism. Precambrian Research, 49, 281-300.
Garfunkel, Z., 1999. History and paleogeography during the PanAfrican orogen to stable platform transition: reappraisal of the evidence from the Elat area and the northern ArabianNubian Shield. Israel Journal of Earth Sciences, 48, 135-157.
Garfunkel, Z., 2000. The crustal evolution of the Arabo-Nubian massif with special reference to the Sinai Peninsula. Precambrian Research, 28, 1-74.
Ghazaly, M.K., El Afandy, A.H., Fawzy, Kh.M., Fahmy, M.A., 2015. The pegmatitic rocks of El-Hudi and Um Hibal areas, southeastern Desert, Egypt: genesis and petrological characteristics. Arab Journal of Geosciences, 8, 161-186.
Gualda, G.A.R., Ghiorso, M.S., 2014. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS. Part 1: Principles, procedures, and evaluation of the method. Contribution to Mineralogy and Petrology, 168(1): 1033, 17pp. DOI: 10.1007/s00410-014-1033-3
Iacumin, M., Mazaroli, A., El-Metwally, A.A., Piccirillo, E.M., 1998. Neoproterozoic dyke swarms from southern Sinai (Egypt): geochemistry and petrogenetic aspects. Journal of African Earth Sciences, 26, 49-64.
Icenhower, J., London, D., 1996. Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt. American Mineralogist, 81, 719-734.
Jackson, N.J., 1983. Beryl pegmatite at Jabal Tarban, southern Najd region, Kingdom of Saudi Arabia. Journal of African Earth Sciences, 4, 289-291.
Jahns, R.H., Burnham, C.W., 1969. Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. Economic Geology, 64, 843-864.
Jahn, B.-M., Wu, F.Y., Capdevila, R., Martineau, F., Zhao, Z., Wang, Y., 2001. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granite from the Great Xing’an Mountains in NE China. Lithos, 59, 171-198.
Jarrar, G., Baumann, A., Wachendorf, H., 1983. Age determinations in the Precambrian basement of the Wadi Araba area, southwest Jordan. Earth Planetary Science Letters, 63, 292-304.
Kessel, R., Stein, M., Navon, O., 1998. Petrogenesis of late Neoproterozoic dikes in the northern Arabian-Nubian Shield: Implications for the Origin of A-type granites. Precambrian Research, 92, 195-213.
Khalil, A.E.S., Obeid, M.A., Azer, M.K. 2015. Late Neoproterozoic post-collisional mafic magmatism in the Arabian-Nubian Shield: A case study from Wadi El-Mahash gabbroic intrusion in southeast Sinai, Egypt. Journal of African Earth Sciences, 105, 29-46.
King, P.L., White, A.J.R., Chappel, B.W., Allen, C.M., 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. Journal of Petrology, 38, 371-391.
Klimm, K., Holtz, F., Johannes, W., King, P.L., 2003. Fractionation of metaluminous A-type granites: an experimental study of the Wangrah Suite, Lachlan Fold Belt, Australia. Precambrian Research, 124, 327-341.
Kröner, A., Eyal, M., Eyal, Y., 1990. Early Pan-African evolution of the basement around Elat, Israel, and Sinai Peninsula revealed by single-zircon evaporation dating, and implication for crustal accretion rates. Geology, 18, 545-548.
Lee, S.-G., Asahara, Y., Tanaka, T., Lee, S.R., Lee, T., 2013. Geochemical significance of the Rb-Sr, La-Ce and Sm-Nd isotope systems in A-type rocks with REE tetrad patterns and negative Eu and Ce anomalies: The Cretaceous Muamsa and Weolaksan granites, South Korea. Chemie der Erde, 73, 75-88.
Liégeois, J.P., Black, R., 1987. Alkaline magmatism subsequent to collision in the Pan-African belt of the Adrar des Iforas. In: Fitton, J.G., Upton, B.G.J. (eds.). Alkaline Igneous Rocks. Geological Society, 30 (Special Publication), 30, 381-401.
Liégeois, J.P., Navez, J., Black, R., Hertogen, J., 1998. Contrasting origin of post-collision high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos, 45, 1-28.
London, D., 2005. Geochemistry of Alkali and Alkaline Earth Elements in Ore–Forming Granites, Pegmatites, and Rhyolites. In: Linnen, R.L., Sampson, I.M. (eds.). RareElement Geochemistry and Mineral Deposits, 175-199.
London, D., 2008. Pegmatites. The Canadian Mineralogist, 10 (Special Publication), 347pp.
London, D., Morgan, G.B.V.I., Hervig, R.L., 1989. Vaporundersaturated experiments with Macusani glass+H2O at 200MPa, and the internal differentiation of granitic pegmatites. Contribution to Mineralogy and Petrology, 102, 1-17.
Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of American Bulletin, 101, 635-643.
Meert, J.G., 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics, 362, 1-40.
Morgan, G.B.VI, London, D., 1999. Crystallization of the Little Three layered pegmatite-aplite dike, Ramona District, California. Contributions to Mineralogy and Petrology, 136, 310-330.
Morag, N., Avigad, D., Gerdes, A., Belousova, E., Harlavan, Y., 2011. Crustal evolution and recycling in the northern Arabian-Nubian Shield: new perspectives from zircon Lu-Hf and U-Pb systematics. Precambrian Research, 186, 101-116.
Nachit, H., Ibhi, A., Abia, E.H., Ohoud, M.B., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Géoscience, 337, 1415-1420.
Pallister, J.S., Stacy, J.S., Fisher, L.B., Premo, W.R., 1988. Precambrian ophiolites of Arabia: geological settings, U-Pb geochronology, Pb-isotope characteristics, and implications for crustal accretion. Precambrian Research, 38, 1-54.
Patchett, P.J., Chase, C.G., 2002. Role of transform continental margins in major crustal growth episodes. Geology, 30, 39-42.
Pearce, J.A., 1996. Sources and settings of granitic rocks. Episodes, 19, 120-125.
Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983.
Samuel, M.D., Moussa, H.E., Azer, M.K., 2001a. Geochemistry and petrogenesis of Iqna Shar,a volcanic rocks, Central Sinai, Egypt. Egyptian Journal of Geology, 45(2), 921-940.
Samuel, M.D., Moussa, H.E., Azer, M.K., 2001b. Petrography and mineral chemistry of Iqna Shar,a volcanic rocks , Central Sinai, Egypt. Egyptian Journal of Geology, 45(1), 107-130.
Samuel, M.D., Moussa, H.E., Azer, M.K., 2007. A-type Volcanics in Central Eastern Sinai, Egypt. Journal of African Earth Sciences, 47, 203-226.
Sherif, M.I., Ghoneim, M.F., Heikal, M.T.S., El Dosuky, B.T., 2013. Perogenesis of granites, Sharm El-Sheikh area, South Sinai, Egypt: petrological constrains and tectonic evolution. Mineralogy and Petrology, 107, 765-783.
Shimron, A.E., 1972. The Precambrian Structural and Metamorphic History of the Elat Area, With Comparative Notes on the Geology of the Sinai Peninsula. Ph.D. thesis. Jerusalem, The Hebrew University, 244pp.
Shimron, A.E., 1988. Discussion on the age of the Feiran basement rocks, Sinai: implications for late Precambrian crustal evolution in the northern Arabian-Nubian Shield. Journal of the Geological Society of London, 145, 1033-1035.
Simmons, W.B., Foorf, E.E., Falster, A.U., King, V.T., 1995. Evidence for an anatectic origin of granitic pegmatites, western Maine, USA. Geological Society of America, abstracts with programs, 27(6), A411.
Simmons, W.B., Webber, K.L., Falster, A.U., Nizamoff, J.W., 2003. Pegmatology - Pegmatite Mineralogy, Petrology and Petrogenesis. New Orleans (Lousiana), Rubellite Press, 176pp.
Stein, M., 2003. Tracing the plume material in the ArabianNubian Shield. Precambrian Research, 123, 223-234.
Stein, M., Goldstein, S., 1996. From plume head to continental lithosphere in the Arabian-Nubian Shield. Nature, 382, 773-778.
Stern, R.J., 1994. Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annual Reviews of Earth and Planetary Science, 22, 319-351.
Stern, R.J., Manton, W.I., 1987. Age of Feiran basement rocks, Sinai: implications for late Precambrian crustal evolution in the northern Arabian-Nubian Shield. London, Journal of the
Geological Society, 144, 569-575.
Stoeser, D.W., Frost, C.D., 2006. Nd, Pb, Sr and O isotope characterization of Saudi Arabian Shield terranes. Chemical Geology, 226, 163-188.
Sylvester, P.J., 1989. Post-collisional alkaline granites. Journal of Geology, 97, 261-280.
Webber, K.L., Falster, A.U., Simmons, W.B., Foord, E.E., 1997. The role of diffusion-controlled oscillatory nucleation in the formation of line rock in pegmatite-aplite dikes. Journal of Petrology, 38, 1777-1791.
Webber, K.L., Simmons, W.B., Falster, A.U., Foord, E.E., 1999. Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California. American Mineralogist, 84, 708-717.
Whalen, J.B., Currie, K.L., Chappel, B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contribution to Mineralogy and Petrology, 95, 407-419.
Wise, M.A., 1999. Characterization and classification of NYFtype pegmatites. Canadian Mineralogist, 37, 802-803.
Zhao, Z.H., Xiong, X.L., Han, X.D., Wang, Y.X., Wang, Q., Bao, Z.W., Jahn, B.M., 2002. Controls on the REE tetrad effect in granites: evidence from the Qianlishan and Baerzhe granites, China. Geochemical Journal, 36, 527-543.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
Geologica Acta is the property of the UB, GEO3BCN, IDAEA and UAB. Geologica Acta must be cited for any partial or full reproduction. Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows anyone to reproduce and disseminate the content of the journal and even make derivative works crediting authorship and provenance and distributing possible derivative works under the same or an equivalent license.
Author Rights
Authors retain the copyright on their papers and are authorized to post them on their own web pages or institutional repositories. The copyright was retained by the journal from the year 2003 until 2009. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission from Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.