Aspectes bioètics de l'ús de sistemes d'intel·ligència artificial en el camp de la salut: un estudi exploratory
DOI:
https://doi.org/10.1344/rbd2023.57.35146Paraules clau:
bioética, inteligência artificial, cuidado em saúdeResum
Objectiu: analitzar la percepció dels usuaris de les xarxes socials sobre l'ús de sistemes d'IA al camp de la salut i els aspectes bioètics associats a aquest ús. Mètode: Estudi de mètode mixt, del tipus descriptiu-exploratori. El camí metodològic es va dividir en dues etapes: (1) recopilació d'informació sobre els aspectes bioètics principals involucrats en l'ús de la IA i (2) elaboració d'escenaris per a la presa de decisions. Les dades quantitatives es van analitzar mitjançant estadística descriptiva per caracteritzar la mostra des del punt de vista sociodemogràfic, així com per caracteritzar el perfil de presa de decisions de la mostra pel que fa a qüestions bioètiques associades a l'ús de sistemes d'IA. L'anàlisi de dades qualitatives es va fer utilitzant l'anàlisi de contingut de Bardin. Resultats: quant al perfil sociodemogràfic, es pot observar una mostra de dones adultes amb títol universitari. Pel que fa a les preocupacions ètiques associades als escenaris aplicats, les principals preocupacions van ser en primer lloc la privadesa i confidencialitat de les dades, seguides de les preocupacions relacionades amb la responsabilitat associada a l'ús d'aquestes tecnologies, així com el consentiment informat. Conclusió: D'aquesta manera, es destaca la importància de nous estudis empírics exploratoris com aquest, que avaluïn la percepció, actituds i opinions de públics especialitzats, com a professionals de la salut, dret, humanitats, per tal d'obtenir evidències concretes per al desenvolupament . programes de gestió i governança dels sistemes d'IA, especialment a l'escenari brasiler, on els recursos són escassos.
Referències
Astromskė, K., Peičius, E., & Astromskis, P. (2020). Ethical and legal challenges of informed consent applying artificial intelligence in medical diagnostic consultations. AI & SOCIETY. https://doi.org/10.1007/s00146-020-01008-9
Ayoub, A., & Pulijala, Y. (2019). The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery. BMC Oral Health, 19, 1–8. https://doi.org/10.1186/s12903-019-0937-8
Baig, M. A., Almuhaizea, M. A., Alshehri, J., Bazarbashi, M. S., & Al-Shagathrh, F. (2020). Urgent Need for Developing a Framework for the Governance of AI in Healthcare. Studies in Health Technology and Informatics, 272, 253–256. https://doi.org/10.3233/SHTI200542
Bandman, E. L., & Bandman, B. (1984). Bioethics and Human Rights: A Reader for Health Professionals. Univ Pr of Amer.
Bardin, L. (2011). Análise de Conteúdo (2nd ed.). Edições 70. https://books.google.com.br/books?id=AFpxPgAACAAJ
Bazeley, P. (2013). QUALITATIVE DATA ANALYSIS: PRACTICAL STRATEGIES. SAGE Publications, Inc.
Bazeley, P., & Jackson, K. (2013). Qualitative Data Analysis with Nvivo. SAGE Publications, Inc.
Beauchamp, T. (2010). Standing on principles. Oxford University Press.
Beauchamp, T. L., & Childress, J. F. (2013). Principles of Biomedical Ethics (7th ed.). Oxford University Press.
Blease, C., Kaptchuk, T. J., Bernstein, M. H., Mandl, K. D., Halamka, J. D., & Desroches, C. M. (2019). Artificial intelligence and the future of primary care: exploratory qualitative study of UK general practitioners’ views. Journal of Medical Internet Research, 21(3). https://doi.org/10.2196/12802
Brasil. (2018). Lei Geral de Proteção de Dados Pessoais (LGPD). DOU, 14 de Agosto de 2018. http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm
Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., & Floridi, L. (2018). Artificial Intelligence and the ‘Good Society’: the US, EU, and UK approach. Science and Engineering Ethics, 24(2), 505–528. https://doi.org/10.1007/s11948-017-9901-7
Chianca, V., Cuocolo, R., Gitto, S., Albano, D., Merli, I., Badalyan, J., Cortese, M. C., Messina, C., Luzzati, A., Parafioriti, A., Galbusera, F., Brunetti, A., & Sconfienza, L. M. (2021). Radiomic Machine Learning Classifiers in Spine Bone Tumors: A Multi-Software, Multi-Scanner Study. European Journal of Radiology, 137, 109586. https://doi.org/10.1016/j.ejrad.2021.109586
Coeckelbergh, M. (2020). Artificial Intelligence, Responsibility Attribution, and a Relational Justification of Explainability. Science and Engineering Ethics, 26(4), 2051–2068. https://doi.org/10.1007/s11948-019-00146-8
Creswell, J. ., & Clark, V. L. P. (2015). Pesquisa de Métodos Mistos (2a). Penso Editora.
Cui, M., & Zhang, D. Y. (2021). Artificial intelligence and computational pathology. Laboratory Investigation, 101(4), 412–422. https://doi.org/10.1038/s41374-020-00514-0
Do, H. M., Spear, L. G., Nikpanah, M., Mirmomen, S. M., Machado, L. B., Toscano, A. P., Turkbey, B., Bagheri, M. H., Gulley, J. L., & Folio, L. R. (2020). Augmented Radiologist Workflow Improves Report Value and Saves Time: A Potential Model for Implementation of Artificial Intelligence. Academic Radiology, 27(1), 96–105. https://doi.org/10.1016/j.acra.2019.09.014
Ekmekci, P. E., & Arda, B. (2020). History of Artificial Intelligence (pp. 1–15). https://doi.org/10.1007/978-3-030-52448-7_1
Emanuel, E. J., & Wachter, R. M. (2019). Artificial Intelligence in Health Care. JAMA, 321(23), 2281. https://doi.org/10.1001/jama.2019.4914
Faleiros, M. C., Nogueira-Barbosa, M. H., Dalto, V. F., Júnior, J. R. F., Tenório, A. P. M., Luppino-Assad, R., Louzada-Junior, P., Rangayyan, R. M., & de Azevedo-Marques, P. M. (2020). Machine learning techniques for computer-aided classification of active inflammatory sacroiliitis in magnetic resonance imaging. Advances in Rheumatology, 60(1), 25. https://doi.org/10.1186/s42358-020-00126-8
Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., & Vayena, E. (2018). AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds and Machines, 28(4), 689–707. https://doi.org/10.1007/s11023-018-9482-5
Goldim, J. R. (2006). Bioética: Origens e complexidade. Rev HCPA, 26(2).
Goldim, J. R. (2009). [Complex bioethics: a comprehensive approach to decision making process]. Revista AMRIGS, 53(1), 58–63.
Goldim, J. R. (2016). Bioethics after Levinas. In eLS (pp. 1–4). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0026694
Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4), 5–14. https://doi.org/10.1177/0008125619864925
Husnayain, A., Shim, E., Fuad, A., & Su, E. C.-Y. (2020). Understanding the Community Risk Perceptions of the COVID-19 Outbreak in South Korea: Infodemiology Study. Journal of Medical Internet Research, 22(9), e19788. https://doi.org/10.2196/19788
Johnson, S. L. J. (2019). AI, Machine Learning, and Ethics in Health Care. The Journal of Legal Medicine, 39(4), 427–441. https://doi.org/10.1080/01947648.2019.1690604
Jonas, H. (2006). O principio responsabilidade: ensaio de uma etica para a civilização tecnologica. Contraponto.
Kaul, V., Enslin, S., & Gross, S. A. (2020). History of artificial intelligence in medicine. Gastrointestinal Endoscopy, 92(4), 807–812. https://doi.org/10.1016/j.gie.2020.06.040
Larson, D. B., Magnus, D. C., Lungren, M. P., Shah, N. H., & Langlotz, C. P. (2020). Ethics of Using and Sharing Clinical Imaging Data for Artificial Intelligence: A Proposed Framework. Radiology, 192536. https://doi.org/10.1148/radiol.2020192536
Lin, S. Y., Mahoney, M. R., & Sinsky, C. A. (2019). Ten Ways Artificial Intelligence Will Transform Primary Care. Journal of General Internal Medicine. https://doi.org/10.1007/s11606-019-05035-1
Liyanage, H., Liaw, S.-T., Jonnagaddala, J., Schreiber, R., Kuziemsky, C., Terry, A., & de Lusignan, S. (2019a). Artificial Intelligence in Primary Health Care: Perceptions, Issues, and Challenges. Yearbook of Medical Informatics. https://doi.org/10.1055/s-0039-1677901
Liyanage, H., Liaw, S.-T., Jonnagaddala, J., Schreiber, R., Kuziemsky, C., Terry, A. L., & de Lusignan, S. (2019b). Artificial Intelligence in Primary Health Care: Perceptions, Issues, and Challenges. Yearbook of Medical Informatics, 28(01), 041–046. https://doi.org/10.1055/s-0039-1677901
Lopez-Jimenez, F., Attia, Z., Arruda-Olson, A. M., Carter, R., Chareonthaitawee, P., Jouni, H., Kapa, S., Lerman, A., Luong, C., Medina-Inojosa, J. R., Noseworthy, P. A., Pellikka, P. A., Redfield, M. M., Roger, V. L., Sandhu, G. S., Senecal, C., & Friedman, P. A. (2020). Artificial Intelligence in Cardiology: Present and Future. Mayo Clinic Proceedings, 95(5), 1015–1039. https://doi.org/10.1016/j.mayocp.2020.01.038
Marquis, P., Papini, O., & Prade, H. (2020). Elements for a History of Artificial Intelligence. In A Guided Tour of Artificial Intelligence Research (pp. 1–43). Springer International Publishing. https://doi.org/10.1007/978-3-030-06164-7_1
Martin, A., Nateqi, J., Gruarin, S., Munsch, N., Abdarahmane, I., Zobel, M., & Knapp, B. (2020). An artificial intelligence-based first-line defence against COVID-19: digitally screening citizens for risks via a chatbot. Scientific Reports, 10(1), 19012. https://doi.org/10.1038/s41598-020-75912-x
Morley, J., Machado V, C. C., Burr, C., Cowls, J., Joshi, I., Taddeo, M., & Floridi, L. (2020). The ethics of AI in health care: A mapping review. SOCIAL SCIENCE & MEDICINE, 260. https://doi.org/10.1016/j.socscimed.2020.113172
Oren, O., Gersh, B. J., & Bhatt, D. L. (2020). Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints. The Lancet Digital Health, 2(9), e486–e488. https://doi.org/10.1016/S2589-7500(20)30160-6
Price, W. N. 2nd, & Cohen, I. G. (2019). Privacy in the age of medical big data. Nature Medicine, 25(1), 37–43. https://doi.org/10.1038/s41591-018-0272-7
Racine, E., Boehlen, W., & Sample, M. (2019). Healthcare uses of artificial intelligence: Challenges and opportunities for growth. Healthcare Management Forum, 32(5), 272–275. https://doi.org/10.1177/0840470419843831
Reddy, S., Allan, S., Coghlan, S., & Cooper, P. (2020). A governance model for the application of AI in health care. Journal of the American Medical Informatics Association, 27(3), 491–497. https://doi.org/10.1093/jamia/ocz192
Risling, T. L., & Low, C. (2019). Advocating for Safe, Quality and Just Care: What Nursing Leaders Need to Know about Artificial Intelligence in Healthcare Delivery. Nursing Leadership (Toronto, Ont.), 32(2), 31–45. https://doi.org/10.12927/cjnl.2019.25963
Soltan, A. A. S., Kouchaki, S., Zhu, T., Kiyasseh, D., Taylor, T., Hussain, Z. B., Peto, T., Brent, A. J., Eyre, D. W., & Clifton, D. A. (2021). Rapid triage for COVID-19 using routine clinical data for patients attending hospital: development and prospective validation of an artificial intelligence screening test. The Lancet Digital Health, 3(2), e78–e87. https://doi.org/10.1016/S2589-7500(20)30274-0
Tang, X. (2020). The role of artificial intelligence in medical imaging research. BJR|Open, 2(1), 20190031. https://doi.org/10.1259/bjro.20190031
Tsiknakis, N., Trivizakis, E., Vassalou, E., Papadakis, G., Spandidos, D., Tsatsakis, A., Sánchez‑García, J., López‑González, R., Papanikolaou, N., Karantanas, A., & Marias, K. (2020). Interpretable artificial intelligence framework for COVID‑19 screening on chest X‑rays. Experimental and Therapeutic Medicine, 20(2), 727–735. https://doi.org/10.3892/etm.2020.8797
UNESCO. (2009). The UNESCO Universal Declaration on Bioethics and Human Rights Background , principles and application (H. A. M. J. ten Have & M. S. Jean (eds.)). United Nations Educational. http://www.unesco-chair-bioethics.org/wp-content/uploads/2015/08/The-UNESCO-Universal-Declaration-on-Bioethics-and-Human-Rights-Background-Principles-and-Application.pdf
Uusitalo, S., Tuominen, J., & Arstila, V. (2020). Mapping out the philosophical questions of AI and clinical practice in diagnosing and treating mental disorders. Journal of Evaluation in Clinical Practice, jep.13485. https://doi.org/10.1111/jep.13485
Visweswaran, S., Colditz, J. B., O’Halloran, P., Han, N.-R., Taneja, S. B., Welling, J., Chu, K.-H., Sidani, J. E., & Primack, B. A. (2020). Machine Learning Classifiers for Twitter Surveillance of Vaping: Comparative Machine Learning Study. Journal of Medical Internet Research, 22(8), e17478. https://doi.org/10.2196/17478
Weikert, T., Winkel, D. J., Bremerich, J., Stieltjes, B., Parmar, V., Sauter, A. W., & Sommer, G. (2020). Automated detection of pulmonary embolism in CT pulmonary angiograms using an AI-powered algorithm. European Radiology, 30(12), 6545–6553. https://doi.org/10.1007/s00330-020-06998-0
Woo, H., Cho, Y., Shim, E., Lee, J.-K., Lee, C.-G., & Kim, S. H. (2016). Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea. Journal of Medical Internet Research, 18(7), e177. https://doi.org/10.2196/jmir.4955
Yetisen, A. K., Martinez-Hurtado, J. L., Ünal, B., Khademhosseini, A., & Butt, H. (2018). Wearables in Medicine. Advanced Materials, 30(33), 1706910. https://doi.org/10.1002/adma.201706910
Zhang, J., Oh, Y. J., Lange, P., Yu, Z., & Fukuoka, Y. (2020). Artificial Intelligence Chatbot Behavior Change Model for Designing Artificial Intelligence Chatbots to Promote Physical Activity and a Healthy Diet: Viewpoint. Journal of Medical Internet Research, 22(9), e22845. https://doi.org/10.2196/22845
Descàrregues
Publicades
Com citar
Número
Secció
Llicència
Drets d'autor (c) 2023 Leonardo de Oliveira, Lucas Garcia, Evelise Duarte, Fagner de Moura
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
Aquesta obra està sota una llicència internacional Creative Commons Reconeixement-NoComercial-SenseObraDerivada 4.0.
Els/les autors/es conserven els drets d'autoria dels articles i autoritzen la Universitat de Barcelona a publicar-los en la seva Revista de Bioética y Derecho i a incloure'ls en els serveis d'indexació i abstracts, bases de dades acadèmiques i repositoris en els quals participa la revista. Els treballs publicats en la Revista de Bioètica i Dret estan sota la llicència Creative Commons Reconeixement-NoComercial-SenseObraDerivada 4.0 Internacional (by-nc-nd 4.0), que permet compartir l'obra amb tercers, sempre que aquests reconeguin la seva autoria, la seva publicació inicial en aquesta revista i les condicions de la llicència. No es permet un ús comercial de l'obra original ni la generació d'obres derivades.