Actividad física y cognición: inseparables en el aula

Authors

DOI:

https://doi.org/10.1344/joned.v1i1.31665

Keywords:

Actividad física, neuroeducación, neurotransmsores, BDNF, formación docente, innovación pedagócica

Abstract

Tradicionalmente, la educación ha tendido a compartimentar el pensamiento abstracto, la emoción y la actividad física. Sin embargo, la evidencia neurocientífica sugiere que estos tres elementos están estrechamente vinculados con el proceso de aprendizaje. En la “Introducción” de este artículo se repasa el contexto actual: cómo la tradicional clase magistral relega a los estudiantes a un papel pasivo y sedentario que impide el movimiento físico; cómo en los colegios se van reduciendo las horas de recreo y suprimiendo las clases de educación física o aquellas asignaturas que involucran todo el cuerpo (teatro, música, actividades al aire libre), con lo cual se limita aún más la presencia de la actividad física en el entorno de aprendizaje. La evidencia neurocientífica sugiere que el sedentarismo no solo tiene un impacto nocivo en el bienestar físico, sino también en la salud cerebral. El ser humano está diseñado para moverse, para interrelacionarse con su medioambiente, con el movimiento: la actividad física es un factor clave que contribuye al funcionamiento saludable del cerebro. En la sección 2, “Aportes de la investigación neurocientífica”, las autoras presentan y analizan diversos estudios y metaanálisis que destacan la asociación positiva entre la actividad física y la cognición en estudiantes de Educación Primaria y Secundaria.  En estas investigaciones examinan este vínculo en tres niveles: el incremento de la vascularización (que incrementa el oxígeno y la glucosa en el cerebro); la liberación de neurotransmisores y el factor neurotrófico derivado del cerebro (BDNF en sus siglas en inglés) que favorecen la neurogénesis, la memoria, la atención y la motivación; y el desarrollo de circuitos neurales complejos relacionados con el movimiento y su interconexión con las funciones ejecutivas del cerebro. En la sección 3, “Discusión”, se repasan las limitaciones y las aplicaciones de la evidencia examinada. El artículo concluye con unas recomendaciones para que los docentes puedan integrar la actividad física en el aula o en el entorno de aprendizaje. Teniendo en cuenta esta evidencia y la realidad educacional actual, que generalmente considera al aprendizaje como una actividad abstracta, divorciada de nuestra corporalidad, las autoras argumentan la necesidad de incorporar la actividad física al entorno de aprendizaje.

Author Biographies

Anya Doherty, Universitat de Barcelona

Estudiante del Doctorado en Educación y Sociedad, Universitat de Barcelona

Profesora en la Pontifícia Universidad Católica de Valparaíso, Chile

Anna Forés, Universitat de Barcelona

Doctora y profesora en Educación en la Universidad de Barcelona

Directora Adjunta de la Cátedra en Neuroeducación UB-EDU1st

 

References

1. Immordino-Yang M, Damasio A. We feel, therefore we learn: the relevance of affective and social neuroscience to education. Mind Brain Educ. 2007; 1, 3-10. doi: 10.1111/j.1751-228X.2007.00004.x.

2. Chaddock-Heyman L, Erickson KI, Kienzler C, Drollette ES, Raine LB, Kao SC et al. Physical activity increases white matter microstructure in children. Front. Neurosci. 2018; 12, 950. Doi: 10.3389/fnins.2018.00950.

3. Organización Mundial de la Salud. World Health Statistics 2018: Monitoring health for the SDGs. Disponible en: https://www.who.int/gho/publications/world_health_statistics/2018/en/ (consultado el 01/06/2020).

4. Organización Mundial de la Salud. Prevalence of insufficient physical activity among school going adolescents. Disponible en: https://apps.who.int/gho/data/view.main.2463ADO?lang=en# (consultado el 01/06/2020).

5. Bramble DM, Lieberman DE. Endurance running and the evolution of homo. Nature. 2004; 432, 345-352. doi: 10.1038/nature03052.

6. Lieberman DE. Four legs good, two legs fortuitous: brains, brawn and the evolution of human bipedalism. En: Losos JC editor. Light of evolution. Greenwood Village, CO: Roberts and Company; 2010. p. 55-71.

7. Raichlen DA, Polk JD. Linking brains and brawn: exercise and the evolution of human neurobiology. Proc. R. Soc. B. 2013; 280, 20122250. doi: 10.1098/rspb.2012.2250.

8. Vorkapic-Ferreira C, Souza Góis R, Gomes LP, Britto A, Afrânio B, Dantas M et al. Nascidos para correr: a importância do exercício para a saúde do cerebro. Born to run: the importance of exercise for the brain health. Rev. Bras. Med. Esporte. 2017; 23, 495-503. doi: 10.1590/1517-869220172306175209.

9. Llinás R. I of the vortex: from neurons to self. Cambridge, MA: MIT Press; 2001.

10. Ratey J, Hagerman E. Spark: the revolutionary new science of exercise and the brain. Nueva York, NY: Little, Brown & Company; 2008.

11. Wolpert D. The real reason for brains - Is movement. Cambridge University Research News. 2011. Disponible en: https://www.cam.ac.uk/research/news/the-man-with-the-golden-brain. Consultado el 13/06/2020.

12. Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000; 71, 44-56. doi: 10.1111/1467-8624.00117.

13. Rosenbaum DA, Carlson RA, Gilmore RO. Acquisition of intellectual and perceptual-motor skills. Annu. Rev. Psychol. 2001; 52, 453-470.

14. Diamond, A. The evidence base for improving school outcomes by addressing the whole child and by addressing skills and attitudes, not just content. Early Educ. Dev. 2010; 21, 780-793. doi: 10.1080/10409289.2010.514522.

15. Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002; 25, 295-301. doi: 10.1016/S0166-2236(02)02143-4.

16. Hillman CH, Castelli DM, Buck SM. Aerobic fitness and neurocognitive function in healthy preadolescent children. Med.Sci. Sports Exerc. 2005; 37, 1967-1974. doi: 10.1249/01.mss.0000176680.79702.ce.

17. Hillman CH, Buck S, Themanson J, Pontifex M, Castelli, D. Aerobic fitness and cognitive development: event-related brain potential and task performance indices of executive control in preadolescent children. Dev.Psychol. 2009a; 45, 114-129. doi: 10.1037/a0014437.

18. Chaddock L, Erickson K, Prakasch RS, Kima J., Voss M, Pontifex M. et al. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res. 2010; 1358, 172-183. doi: 10.1016/j.brainres.2010.08.049.

19. Castelli D, Barcelona J, Glowacki E, Calvert H. Active education: Growing evidence on physical activity and academic performance. San Diego, CA: Active Living Research; 2014. Disponible en: https://www.researchgate.net/publication/-269708986 (consultado el 13/06/2020).

20. Erickson K, Hillman C, Kramer A. Physical activity, brain, and cognition. Curr. Opin. Behav. Sci. 2015; 4, 27-32. doi: 10.1016/j.cobeha.2015.01.005.

21. Mandolesi L, Polverino A, Montuori S, Foti F, Ferraioli G, Sorrentino P, et al. Effects of physical exercise on cognitive functioning and wellbeing: biological and psychological benefits. Front. Psychol. 2018; 9, 509. doi: 10.3389/fpsyg.2018.00509.

22. Marques A, Gómez F, Martins J, Catunda R, Sarmento H. Association between physical education, school-based physical activity, and academic performance: a systematic review. Retos. 2017; 31, 316-320. Disponible en: https://recyt.fecyt.es/index.php/retos/article/view/53509.

23. Hart L. How the brain works. Nueva York, NY: Basic Books; 1975.

24. Delp MD, Armstrong RB, Godfrey DA, Laughlin MH, Ross CD, Wilkerson MK. Exercise increases blood flow to locomotor, vestibular, cardiorespiratory and visual regions of the brain in miniature swine. J. Physiol. 2001; 533, 849-859. doi: 10.1111/j.1469-7793.2001.t01-1-00849.x.

25. Hillman CH, Pontifex MB, Raine LB, Castelli DM, Hall EE, Kramer AF. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience. 2009b; 159, 1044-1054. doi: 10.1016/j.neuroscience.2009.01.057.

26. Krock LP, Hartung GH. Influence of post-exercise activity on plasma catecholamines, blood pressure and heart rate in normal subjects. Clin. Autonom. Res. 1992; 2, 89. doi: 10.1007/BF01819663.

27. Ma J, Le Mare L, Gurd B. Four minutes of in-class high-intensity interval activity improves selective attention in 9- to 11-year olds. Appl. Physiol. Nutr. Metab. 2015; 40, 238-244. doi: 10.1139/apnm-2014-0309.

28. Mahar M, Murphy S, Rowe D, Golden J, Shields T, Raedke T. Effects of a classroom-based program on physical activity and on-task behavior. Med. Sci. Sports Exerc. 2006; 38, 2086-2094. doi: 10.1249/00005768-200605001-01239.

29. Kontra C, Lyons DJ, Fischer SM, Beilock SL. Physical experience enhances science learning. Psychol. Sci. 2015; 26, 737-749. doi: 10.1177/0956797615569355.

30. Glenberg AM. What memory is for target article and commentaries]. Behav. Brain Sci. 1997; 20, 1-55. doi: 10.1017/S0140525X97000010.

31. Barsalou LW, Simmons WK, Barbey AK, Wilson CD. Grounding conceptual knowledge in modality-specific systems. Trends Cognit. Sci. 2003; 7, 84-91. doi: 10.1016/S1364-6613(02)00029-3.

32. Zwann RA, Taylor LJ. Seeing, acting, understanding: motor resonance in language comprehension. J. Exp. Psychol. Gen. 2006; 135, 1-11. doi: 10.1037/0096-3445.135.1.1.

33. Beilock SL, Lyons IM, Mattarella-Micke A, Nusbaum HC y Small SL. Sports experience changes the neural processing of action language. Proc. Natl. Acad. Sci. U.S.A. 2008; 105, 1326913273. doi: 10.1073/pnas.0803424105.

34. Ahamed Y, Macdonald H, Reed K, Naylor P, Liu-Ambrose T, McKay H. School-based physical activity does not compromise children’s academic performance. Med. Sci. Sport. Exerc. 2007; 39, 371-376. doi: 10.1249/01.mss.0000241654.45500.8e.

35. Donnelly JE, Lambourne K. Classroom-based physical activity, cognition, and academic achievement. Prev. Med. 2011; 52, S36-S42. doi: 10.1016/j.ypmed.2011.01.021.

36. Carlson SA, Fulton JE, Lee SM, Maynard LM, Brown DR, Kohl, HW, et al. Physical education and academic achievement in elementary school: data from early childhood longitudinal study. Am. J. Public Health. 2008; 98, 721-727. doi: 10.2105/AJPH.2007.117176.

37. Pesce C, Crova C, Cereatti L, Casella R, Bellucci M. Physical activity and mental performance in preadolescents: effects of acute exercise on free-recall memory. Ment. Health Phys. Act. 2009; 2, 16-22. doi: 10.1016/j.mhpa.2009.02.001.

38. Castelli DM, Hillman CH, Hirsch J, Hirsch A, Drollette E. FIT Kids: time in target heart zone and cognitive performance. Prev Med. 2011; 52, S55-S59. doi: 10.1016/j.ypmed.2011.01.019.

39. Gao Z, Hannan P, Xiang P, Stodden DF, Valdez VE. Video game-based exercise, Latino children’s physical health, and academic achievement. Am. J. Prev. Med. 2013; 44, S240-S246. doi: 10.1016/j.amepre.2012.11.023.

40. Basso JC, Suzuki WA. The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: a review. Brain Plasticity. 2017; 2, 127-152. doi: 10.3233/BPL-160040.

41. Goleman D. Emotional intelligence: Why it can matter more than IQ. Nueva York, NY: Bantam Books; 2005.

42. Willis, J. What You Should Know About Your Brain. Educational Leadership ASCD. 2009. Disponible en: http://www.ascd.org/ASCD/pdf/journals/ed_lead/el200912_willis.pdf.

43. Birnbaum S, Gobeske KT, Auerbach J, Taylor JR, Arnsten AFT. A role for norepinephrine in stress-induced cognitive deficits: alpha-1-adrenoceptormediation in the prefrontal cortex. Biol. Psychiatry. 1999; 46, 1266-1274. doi: 10.1016/S0006-3223(99)00138-9.

44. Liston C, McEwen BS, Casey BJ. Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proc. Nat. Acad. Sci. U.S.A. 2009; 106, 912-917. doi: 10.1073/pnas.0807041106.

45. Lavados J. El cerebro y la educación. Neurobiología del aprendizaje. Santiago de Chile: Taurus; 2012.

46. Mora F. Neuroeducación. Madrid: Alianza; 2017.

47. Céspedes A. Educar las emociones. Educar para la vida. Santiago de Chile: Vergara; 2008.

48. Rilling JK, Gutman DA, Zeh TR, Giuseppe P, Bern GS, Kilts CD. A neural basis for social cooperation. Neuron. 2002; 35, 395-405. doi: 10.1016/S0896-6273(02)00755-9.

49. Willis J. Cooperative learning is a brain turn-on. Middle School J. 2008; 38, 4-13. doi: 10.1080/00940771.2007.11461587.

50. Diamond A, Ling D. Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev. Cognit. Neurosci. 2015; 18, 34-48. doi: 10.1016/j.dcn.2015.11.005.

51. Carmack C, de Moor C, Boudreaux E, Amaral-Melendez M, Brantley P. Aerobic fitness and leisure physical activity as moderators of the stress-illness relation. Ann. Behav. Med. 1999; 21, 251-257. doi: 10.1007/BF02884842.

52. Williamson D, Dewey A, Steinberg H. Mood change through physical exercise in nine-to ten-year-old children. Percept. Mot. Skills. 2001; 93, 311-316. doi: 10.2466/pms.2001.93.1.311.

53. Haslacher H, Michlmayr M, Batmyagmar D, Perkmann T, Ponocny-Seliger E, Scheichenberger V, et al. Physical exercise counteracts genetic susceptibility to depression. Neuropsychobiology. 2015; 71, 168-175. doi: 10.1159/000381350.

54. Yang PY, Ho KH, Chen HC, Chien MY. Exercise training improves sleep quality in middle-aged and older adults with sleep problems: a systematic review. J. Physiother. 2012; 58, 157-163. doi: 10.1016/S1836-9553(12)70106-6.

55. Chen LJ, Fox KR, Ku PW, Chang YW. Effects of aquatic exercise on sleep in older adults with mild sleep impairment: a randomized controlled trial. Int. J. Behav. Med. 2015; 23, 501-506. doi: 10.1007/s12529-015-9492-0.

56. Wachob D, Lorenzi DG. Brief report: influence of physical activity on sleep quality in children with autism. J. Autism Dev. Disord. 2015; 45, 2641-2646. doi: 10.1007/s10803-015-2424-7.

57. Gould E. Adult neurogenesis a substrate for experience dependent change. Cell Press. 2015; 19, 151-161. doi: 10.1016/j.tics.2015.01.001.

58. Van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 2005; 25, 8680-8685. doi: 10.1523/JNEUROSCI.1731-05.2005.

59. Vivar C, Potter MC, van Praag H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr. Top. Behav. Neurosci. 2013; 15, 189-210. doi: 10.1007/7854_2012_220.

60. Voss M., Erickson KI, Prakash RS, Chaddock L, Kim JS, Alves H, et al. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav. Immun. 2013; 28, 90-99. doi: 10.1016/j.bbi.2012. 10.021.

61. Jeon YK, Ha CH. Expression of brain-derived neurotrophic factor, IGF-1and cortisol elicited by regular aerobic exercise in adolescents. J. Phys. Ther. Sci. 2015; 27, 737-741. doi: 10.1589/jpts.27.737.

62. Gómez-Pinilla F, Vaynman S, Ying Z. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur. J. Neurosci. 2008; 28, 2278-2287. doi: 10.1111/j.1460-9568.2008.06524.x.

63. Anderson BJ, Eckburg PB, Relucio KI. Alterations in the thickness of motor Cortical sub-regions after motor-skill learning and exercise. Learn. Mem. 2002; 9, 1-9. doi: 10.1101/lm.43402.

64. Chaddock L, Erickson K, Prakasch RS, VanPatter M, Voss M, Pontifex M, et al. Basal ganglia volume is associated with aerobic fitness in preadolescent children. Dev. Neurosci. 2010; 32(3), 249-56. doi: 10.1159/000316648.

65. Rama Kranthi T, Syamala E, Amrutha Kumari K, Soni S, Nazeer M. Effect of physical training on short term memory in school going rural children. J. Med. Sci. Res. 2014; 2, 228-230. Disponibe en: https://www.researchgate.net/publication/329917067_Effect_of_physical_training_on_short_term_memory_in_school_going_rural_children.

66. López-Vicente M, Garcia-Aymerich J, Torrent-Pallicer J, Forns J, Ibarluzea J, Lertxundi N, et al. Are early physical activity and sedentary behaviors related to working memory at 7 and 14 years of age? J. Pediatr. 2017; 188, 35-41, e1. doi: 10.1016/j.jpeds.2017.05.079.

67. Sibley BA, Etnier JL. The relationship between physical activity and cognition in children: a meta-analysis. Ped. Exerc. Sci. 2003; 15, 243-256. doi: 10.1123/pes.15.3.243.

68. Diamond A. Activities and programs that improve children’s executive functions. Curr. Direct. Psychol. Sci. 2012; 21, 335-341. doi: 10.1177/0963721412453722.

69. Ratey J. A user’s guide to the brain. Londres: Abacus; 2001.

70. Manjunath NK, Telles S. Improved performance in the Tower of London test following yoga. Indian J. Physiol. Pharmacol. 2001; 45, 351-354.

71. Lakes KD, Hoyt WT. Promoting self-regulation through school-based martial arts training. J. Appl. Dev. Psychol. 2004; 25, 283-302. doi: 10.1016/j.appdev.2004.04.002.

72. Chang YK, Tsai YJ, Chen TT, Hung TM. The impacts of coordinative exercise in executive function in kindergarten children: an ERP study. Exp. Brain Res. 2013; 225, 187-196. doi: 10.1007/s00221-012-3360-9.

73. Oswald WD, Gunzelmann T, Rupprecht R, Hagen B. Dif-ferential effects of single versus combined cognitive and physical training with older adults: the SimA study in a 5-year perspective. Eur. J. Aging. 2006; 3, 179-192. doi: 10.1007/s10433-006-0035-z.

74. Moreau D, Morrison AB, Conway ARA. An ecological approach to cognitive enhancement: complex motor training. Acta Psychol. 2015; 157, 44-55. doi: 10.1016/j.actpsy.2015.02.007.

75. Lees C, Hopkins J. Effect of aerobic exercise on cognition, academic achievement and psychosocial function in children. A systematic review of randomized control trials. Prev. Chronic Dis. 2013; 10, E174. doi: 10.5888/pcd10.130010.

76. Tomporowski PD, McCullick B, Pendleton BN, Pesce C. Exercise and children’s cognition: the role of exercise characteristics and a place for metacognition. J. Sport Health Sci. 2015; 4, 47-55. Doi: 10.1016/j.jshs.2014.09.003.

77. Donnelly J E, Hillman CH, Castelli D, Etnier J, Lee S, Tomporowski P, et al. Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med. Sci. Sports Exerc. 2016; 48, 1197-1222. doi: 10.1249/MSS.0000000000000901.

78. Resaland GK, Aadland E, Moe VF, Aadland KN, Skrede T, Stavnsbo M, et al. Effects of physical activity on schoolchildren’s academic performance: the Active Smarter Kids (ASK) cluster-randomized controlled trial. Prev. Med. 2016; 91, 322-328. doi: 10.1016/j.ypmed.2016.09.005.

79. Dekker S, Lee N, Paul HJ, Jelle J. Neuromyths in education: prevalence and predictors of misconceptions among teachers. Front. Psychol. 2012; 3, 429. doi: 10.3389/fpsyg.2012.00429.

80. NC Healthy Schools: <www.nchealthyschools.org>; Be Active North Carolina, Inc: <www.beactivenc.org>; NC Physical Education for Me: <www.ncpe4me.co>; NC Health and Wellness Trust Fund: <www.fitkidsnc.com>; ECU Activity Promotion Lab: <www.ecu.edu/cs-hhp/exss/apl.cfm>; Action for Healthy Kids: Tools for Schools: <http://www.actionforhealthykids.org/tools-for-schools/1252-brainbreaks-instant-recess-and-energizers>; NC Public Schools: <www.ncpublicschools. org/curriculum/health>; <http://www.theteachersguide.com/ClassManagement.htm>; <http://www.teachervision.fen.com/>; <http://drwilliampmartin.tripod.com/classm.html>. Elige Educar: <https://eligeeducar.cl/15-pausas-cerebrales-practicas-atencion-implementar-aula>. (Consultados el 13/06/2020)

81. Bruer JT. Education and the brain: a bridge too far. Educ. Res. 1997; 26, 4-16. doi: 10.3102/0013189X026008004.

Published

2020-07-15