La actividad electroencefalográfica asociada a la relación carga cognitiva, estrés y reconocimiento de emociones en un grupo focal de profesores universitarios de ciencias experimentales

Autores/as

DOI:

https://doi.org/10.1344/joned.v5i2.46837

Palabras clave:

Carga cognitiva, Electroencefalografía, Enseñanza de las ciencias, Estrés, Funciones ejecutivas, Reconocimiento de emociones

Resumen

Este artículo presenta el registro y análisis de la actividad eléctrica de señales EEG en situaciones de carga cognitiva, estrés y reconocimiento de emociones como parte de una investigación doctoral que se llevó a cabo con un grupo focal de profesores universitarios de ciencias experimentales colombianos.  Uno de los propósitos del estudio fue analizar los cambios fisiológicos de la actividad eléctrica del cerebro debido a las actividades de enseñanza que implican la carga cognitiva, el estrés y el reconocimiento de las emociones que desencadena este proceso para el grupo de profesores. Para la adquisición de los ritmos de las señales EEG se utilizó el dispositivo Emotiv EPOC+  y un grupo de pruebas psicométricas adaptadas para inducir señales en relación con labores asociadas al ejercicio docente, como son la atención y la memoria. Se utilizó la densidad de potencia espectral como función matemática y las señales con PSD, entropía de permutación y entropía aproximada y se realizó una clasificación con k-NN vecinos más cercanos. Se concluye que hubo un predominio de ritmos theta-alfa en la mayoría de los docentes del estudio, además se identificaron actividades de atención, memoria de trabajo y otras funciones ejecutivas con un rendimiento del 75.1 ± 3.05% con el clasificador y, finalmente, se reconocen emociones mixtas, algunas predictoras de estrés laboral como fueron ansiedad y tensión que inciden en el ejercicio docente y en el desarrollo profesional.

Citas

Chiang, H. S., Chen, M. Y., & Liao, L. S. (2022). Cognitive depression detection cyber-medical system based on EEG analysis and deep learning approaches. IEEE Journal of Biomedical and Health Informatics, 27(2), 608-616. https://doi.org/10.1109/JBHI.2022.3200522

Matusz, P. J., Turoman, N., Tivadar, R. I., Retsa, C., & Murray, M. M. (2019). Brain and cognitive mechanisms of top–down attentional control in a multisensory world: Benefits of electrical neuroimaging. Journal of cognitive neuroscience, 31(3), 412-430. https://doi.org/10.1162/jocn_a_01360

Yen, C.; Lin, C.-L.; Chiang, M.-C. Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders. Life 2023, 13, 1472. https://doi.org/10.3390/life13071472

Bruya, B., & Tang, Y. Y. (2018). Is attention really effort? Revisiting Daniel Kahneman’s influential 1973 book attention and effort. Frontiers in psychology, 9, 372633. https://doi.org/10.3389/fpsyg.2018.01133

Adolphs, R., Tranel, D., & Damasio, A. R. (2013). The human amygdala in social judgment. In Autism (pp. 136-140). Routledge.

Koelstra, S., Muhl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., ... & Patras, I. (2011). Deap: A database for emotion analysis; using physiological signals. IEEE transactions on affective computing, 3(1), 18-31.

Shulman, L. S. (2015). PCK: Su génesis y éxodo. En Reexaminando el conocimiento pedagógico del contenido en la enseñanza de las ciencias (pp. 3-13). Routledge.

Sutton, R. E., & Wheatley, K. F. (2003). Teachers’ emotions and teaching: A review of the literature and directions for future research. Educational psychology review, 15, 327-358. https://doi.org/10.1023/A:1026131715856

Zembylas, M. (2003). Emotions and teacher identity: A poststructural perspective. Teachers and teaching, 9(3), 213-238. https://doi.org/10.1080/13540600309378

Sinatra, Gale M., Suzanne H. Broughton, and D. O. U. G. Lombardi. “Emotions in science education.” International handbook of emotions in education. Routledge, 2014. 415-436.

Goswami, U. (2004). Neuroscience and Education. British Journal of Educational Psychology, 74, 1–14. https//doi.org/10.1348/000709904322848798

Blakemore S. J. y Frith U. (2005). The learning brain: Lessons for education: A precis. Developmental Science, 8, 459–465. https://doi.org/10.1111/j.1467-7687.2005.00434.x

Ansari, D. y Coch, D. (2006). Bridges Over Troubled Waters: Education and cognitive neuroscience. Trends in Cognitive Sciences, 10(4), 146–151. https://doi.org/10.1016/j.tics.2006.02.007

Abell, S. K. (2008). Twenty years later: Does pedagogical content knowledge remain a useful idea? International journal of science education, 30(10), 1405-1416. https://doi.org/10.1080/09500690802187041

Van Driel, J. H., Berry, A., & Meirink, J. (2014). Research on science teacher knowledge. In Handbook of research on science education, volume II (pp. 862-884). Routledge.

Litwińczuk, M. C., Muhlert, N., Trujillo‐Barreto, N., & Woollams, A. (2023). Using graph theory as a common language to combine neural structure and function in models of healthy cognitive performance. Human Brain Mapping, 44(8), 3007-3022. https://doi.org/10.1002/hbm.26258

Kim, H., Ährlund-Richter, S., Wang, X., Deisseroth, K., & Carlén, M. (2016). Prefrontal parvalbumin neurons in control of attention. Cell, 164(1), 208-218. http://dx.doi.org/10.1016/j.cell.2015.11.038

Yen, C.; Lin, C.-L.; Chiang, M.-C. Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders. Life 2023, 13, 1472. https://doi.org/10.3390/life13071472

Muñoz-Gutiérrez, P. A., Giraldo, E., Bueno-López, M., & Molinas, M. (2018). Localization of active brain sources from EEG signals using empirical mode decomposition: a comparative study. Frontiers in integrative neuroscience, 12, 55. https://doi.org/10.3389/fnint.2018.00055

Pfurtscheller, G., Stancak Jr, A., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review. International journal of psychophysiology, 24(1-2), 39-46. https://doi.org/10.1016/S0167-8760(96)00066-9.

Harmony, T., Fernández, T., Silva, J., Bernal, J., Díaz-Comas, L., Reyes, A., ... & Rodríguez, M. (1996). EEG delta activity: an indicator of attention to internal processing during performance of mental tasks. International journal of psychophysiology, 24(1-2), 161-171. https://doi.org/10.1016/S0167-8760(96)00053-0

Ko, L. W., Komarov, O., Hairston, W. D., Jung, T. P., & Lin, C. T. (2017). Sustained attention in real classroom settings: An EEG study. Frontiers in human neuroscience, 11, 388. https://doi.org/10.3389/fnhum.2017.00388

Xu, J., & Zhong, B. (2018). Review on portable EEG technology in educational research. Computers in Human Behavior, 81, 340-349. https://doi.org/10.1016/j.chb.2017.12.03768

Grammer, J. K., Xu, K., & Lenartowicz, A. (2021). Effects of context on the neural correlates of attention in a college classroom. NPJ science of learning, 6(1), 15. https://doi.org/10.1038/s41539-021-00094-8

Dong, J. (2022). Analysis of Emotional Stress of Teachers in Japanese Teaching Process Based on EEG Signal Analysis. Occupational Therapy International, 2022. https://doi.org/10.1155/2022/2593338

Díaz, D., Hernández, E., & Rolo, G. (2012). Carga mental de trabajo. España: Ed. Síntesis.

Najmi, S., Amir, N., Frosio, K. E., & Ayers, C. (2015). The effects of cognitive load on attention control in subclinical anxiety and generalised anxiety disorder. Cognition and Emotion, 29(7), 1210-1223. https://doi.org/10.1080/02699931.2014.975188

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational psychologist, 38(1), 1-4. https://doi.org/10.1207/S15326985EP3801_1

Pacheco-Unguetti, A., Acosta, A., Lupiáñez, J., Román, N., & Derakshan, N. (2012). Response inhibition and attentional control in anxiety. Quarterly Journal of Experimental Psychology, 65(4), 646-660. https://doi.org/10.1080/17470218.2011.637114

Mejías, S. S., Martinez, K., Centeno, F., & Sellas, C. (2022). Cognitive Load and Attentional Control in Puerto Ricans with Obsessive-Compulsive Disorder. Revista Iberoamericana de Psicología: Ciencia y Tecnología, 15(1), 21-34. https://doi.org/10.33881/2027-1786.rip.15103

Gevins, A., & Smith, M. E. (2003). Neurophysiological measures of cognitive workload during human-computer interaction. Theoretical issues in ergonomics science, 4(1-2), 113-131. https://doi.org/10.1080/14639220210159717

Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European journal of Neuroscience, 15(8), 1395-1399. https://doi.org/10.1046/j.1460-9568.2002.01975.x

Sterman, M. B., Mann, C. A., Kaiser, D. A., & Suyenobu, B. Y. (1994). Multiband topographic EEG analysis of a simulated visuomotor aviation task. International journal of psychophysiology, 16(1), 49-56. https://doi.org/10.1016/0167-8760(94)90041-8

Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., & Babiloni, F. (2014). Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neuroscience & Biobehavioral Reviews, 44, 58-75. https://doi.org/10.1016/j.neubiorev.2012.10.003

Cacioppo, J. T., Berntson, G. G., Sheridan, J. F., & McClintock, M. K. (2000). Multilevel integrative analyses of human behavior: social neuroscience and the complementing nature of social and biological approaches. Psychological bulletin, 126(6), 829.

Keltner, D., Ekman, P., Gonzaga, G. C., & Beer, J. (2000). Facial expression of emotion. New York: Guilford Publications, 236-248.

Carmona-Fuentes, P., & Rosas-Reyes, R. (2017). Influencia de la inteligencia emocional en el desempeño laboral. Revista Líder, 19(30), 107-118. Recuperado a partir de https://revistaliderchile.ulagos.cl/index.php/liderchile/article/view/2425

Ekman, P. (2016). What scientists who study emotion agree about. Perspectives on psychological science, 11(1), 31-34. https://doi.org/10.1177/1745691615596992

Coan, J. A., & Allen, J. J. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological psychology, 67(1-2), 7-50. https://doi.org/10.1016/j.biopsycho.2004.03.002

Nie, D., Wang, X. W., Shi, L. C., & Lu, B. L. (2011, April). EEG-based emotion recognition during watching movies. In 2011 5th international IEEE/EMBS conference on neural engineering (pp. 667-670). IEEE. https://doi.org/10.1109/NER.2011.5910636.

Da Silva, N. R., & Pinheiro, D. M. (2017). Agruras no trabalho do professor/Troubles in the teacher’s work. Cadernos Brasileiros de Terapia Ocupacional, 25(4), 713-721. https://doi.org/10.4322/2526-8910.ctoAO0928

Iqbal, M. U., Srinivasan, B., & Srinivasan, R. (2020). Dynamic assessment of control room operator’s cognitive workload using Electroencephalography (EEG). Computers & Chemical Engineering, 141, 106726. https://doi.org/10.1016/j.compchemeng.2020.106726

Najmi, S., Amir, N., Frosio, K. E., & Ayers, C. (2015). The effects of cognitive load on attention control in subclinical anxiety and generalised anxiety disorder. Cognition and Emotion, 29(7), 1210-1223. https://doi.org/10.1080/02699931.2014.975188

Eysenck, M. W., & Calvo, M. G. (1992). Anxiety and performance: The processing efficiency theory. Cognition & emotion, 6(6), 409-434. https://doi.org/10.1080/02699939208409696

Lavie, N. (2000). Selective attention and cognitive control: Dissociating attentional functions through different types of load. MIT press.

Creswell, J.W., & Clark, V.L.P. (2011). Designing and conducting mixed methods research (2e ed.). Sage Publications.

Latorre, A., & Del Rincón, D. A. J. (2003): Bases Metodológicas de la Investigación Educativa. Ediciones Experiencia, Barcelona.

Stake, R. E. (2005). Qualitative case studies.

Echeverry, J. D., Lemus, C. G., & Orozco, Á. Á. (2007) Análisis de la densidad espectral de potencia en registros mer. Scientia et technica, 1(35). https://doi.org/10.22517/23447214.5379.

Mulla, F., Eya, E., Ibrahim, E., Alhaddad, A., Qahwaji, R., & Abd-Alhameed, R. (2017, September). Neurological assessment of music therapy on the brain using Emotiv Epoc. In 2017 Internet Technologies and Applications (ITA) (pp. 259-263). IEEE. https://doi.org/10.1109/ITECHA.2017.8101950

Boonyakitanont, P., Lek-Uthai, A., Chomtho, K., & Songsiri, J. (2020). A review of feature extraction and performance evaluation in epileptic seizure detection using EEG. Biomedical Signal Processing and Control, 57, 101702. https://doi.org/10.1016/j.bspc.2019.101702

Balcik, Z. E., Senadim, S., Tekin, B., Dirican, A. C., Eren, F., Karahan, M. G., ... & Atakli, D. (2020). Do interictal EEG findings reflect cognitive function in juvenile myoclonic epilepsy? Epilepsy & Behavior, 111, 107281. https://doi.org/10.1016/j.yebeh.2020.107281

Sánchez-Díaz, G., Escobar-Franco, U. E., Morales-Manilla, L. R., Piza-Dávila, I., Aguirre-Salado, C., & Franco-Arcega, A. (2013). Un algoritmo de clasificación incremental basado en los k vecinos más similares para datos mezclados. Revista Facultad de Ingeniería Universidad de Antioquia, (67), 19-30.

Ostrosky-Solís, F., Ardila, A., & Roselli, M. (1999). Neuropsi: A brief neuropsychological test battery in Spanish with norms by age and educational level. Journal of International Neuropsychological Society, 5, 413–433.

Heaton, R. K., & Staff, P. A. R. (1993). Wisconsin card sorting test: computer version 2. Odessa: Psychological Assessment Resources, 4, 1-4.

Schomer, Donald L., and Fernando Lopes Da Silva. Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, 2012.

Britton, J. W., Frey, L. C., Hopp, J. L., Korb, P., Koubeissi, M. Z., Lievens, W. E., ... & St Louis, E. K. (2016). Electroencephalography (EEG): An introductory text and atlas of normal and abnormal findings in adults, children, and infants.

Sanei, S., & Chambers, J. A. (2013). EEG signal processing. John Wiley & Sons.

Stuss, D. T., Benson, D. F., Clermont, R., Della Malva, C. L., Kaplan, E. F., & Weir, W. S. (1986). Language functioning after bilateral prefrontal leukotomy. Brain and language, 28(1), 66-70. https://doi.org/10.1016/0093-934X(86)90091-X

Goldman-Rakic, P. S. (1987). Development of cortical circuitry and cognitive function. Child development, 601-622. https://doi.org/10.2307/1130201

Fuster, J. M., Bauer, R. H., & Jervey, J. P. (1985). Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain research, 330(2), 299-307. https://doi.org/10.1016/0006-8993(85)90689-4

Petrides, M. (1991). Functional specialization within the dorsolateral frontal cortex for serial order memory. Proceedings of the Royal Society of London. Series B: Biological Sciences, 246(1317), 299-306. https://doi.org/10.1098/rspb.1991.0158

Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1346), 1413-1420. https://doi.org/10.1098/rstb.1996.0125

Islam, M. K., Rastegarnia, A., & Yang, Z. (2016). Methods for artifact detection and removal from scalp EEG: A review. Neurophysiologie Clinique/Clinical Neurophysiology, 46(4-5), 287-305. https://doi.org/10.1016/j.neucli.2016.07.002

Solís-Ortiz, S., & Gutiérrez, M. (2011). Correlación entre los puntajes del Wisconsin Card Sorting Test y la actividad electroencefalográfica en mujeres en la posmenopausia. Revista Chilena de Neuropsicología, 6(2), 76-79.

Fairclough, S. H., & Roberts, J. S. (2011). Effects of performance feedback on cardiovascular reactivity and frontal EEG asymmetry. International Journal of Psychophysiology, 81(3), 291-298. https://doi.org/10.1016/j.ijpsycho.2011.07.012

Doppelmayr, M., Finkenzeller, T., & Sauseng, P. (2008). Frontal midline theta in the pre-shot phase of rifle shooting: differences between experts and novices. Neuropsychologia, 46(5), 1463-1467. https://doi.org/10.1016/j.neuropsychologia.2007.12.026

Konar, A., Chakraborty, A., Bhowmik, P., Das, S., & Halder, A. (2012). Emotion recognition from facial expression and electroencephalogram signals. In Cross-Disciplinary Applications of Artificial Intelligence and Pattern Recognition: Advancing Technologies (pp. 310-337). IGI Global. https://doi.org/10.4018/978-1-61350-429-1.ch017

Chai, M., & Ba, L. (2021). Application of EEG signal recognition method based on duffing equation in psychological stress analysis. Advances in Mathematical Physics, 2021, 1-10. https://doi.org/10.1155/2021/1454547

Brooks, J. A., Chikazoe, J., Sadato, N., & Freeman, J. B. (2019). The neural representation of facial-emotion categories reflects conceptual structure. Proceedings of the National Academy of Sciences, 116(32), 15861-15870. https://doi.org/10.1073/pnas.1816408116

Mayer, John D., Peter Salovey, and David Caruso. “Models of emotional intelligence.” Handbook of intelligence 2 (2000): 396-420.

Descargas

Publicado

2025-02-13 — Actualizado el 2025-02-17