Chromite and platinum group elements mineralization in the Santa Elena Ultramafic Nappe (Costa Rica): geodynamic implications


  • F. ZACCARINI Department of Applied Geosciences and Geophysics, University of Leoben. Peter Tunner Str. 5, 8700 Leoben, Austria.
  • G. GARUTI Department of Applied Geosciences and Geophysics, University of Leoben. Peter Tunner Str. 5, 8700 Leoben, Austria.
  • J.A. PROENZA FERNANDEZ Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB)C/ Martí i Franquès s/n, E–08028 Barcelona, Spain.
  • L. CAMPOS Escuela Centroamericana de Geología, University of Costa Rica. San Pedro de Montes de Oca, 240-2060 UCR, San José, Costa Rica
  • O.A.R. THALHAMMER Department of Applied Geosciences and Geophysics, University of Leoben. Peter Tunner Str. 5, 8700 Leoben, Austria.
  • T. AIGLSPERGER Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB)C/ Martí i Franquès s/n, E–08028 Barcelona, Spain.
  • J.F. LEWIS Department of Earth and Environmental Sciences, The George Washington University. 2029 G St. NW, Washington, D.C. 20052, U.S.A



Chromitite, Santa Elena Ultramafic Nappe, Costa Rica, Chromite composition, PGE-PGM, Geodynamic setting


Chromitites associated with strongly altered peridotite from six distinct localities in the Santa Elena ultramafic nappe (Costa Rica) have been investigated for the first time. Santa Elena chromitites commonly display a compositional variation from extremely chromiferous (Cr/(Cr+Al)=0.81) to intermediate and aluminous (Cr/(Cr+Al)=0.54). This composition varies along a continuous trend, corresponding to calculated parental liquids which may have been derived from the differentiation of a single batch of boninitic magma with Cr-rich and (Al, Ti)-poor initial composition. Fractional precipitation of chromite probably occurred during differentiation of the boninitic melt and progressive metasomatic reaction with mantle peridotite. The distribution of platinum group elements (PGE) displays the high (Os+Ir+Ru)/(Rh+Pt+Pd) ratio typical of ophiolitic chromitites and, consistently, the platinum group minerals (PGM) encountered are mainly Ru-Os-Ir sulfides and arsenides. Textural relations of most of the platinum group elements suggest crystallization at magmatic temperatures, possibly under relatively high sulfur fugacity as indicated by the apparent lack of primary Os-Ir-Ru alloys. The chemical and mineralogical characteristics of chromitites from the Santa Elena ultramafic nappe have a strong affinity to podiform chromitites in the mantle section of supra-subduction-zone ophiolites. Calculated parental melts of the chromitites are consistent with the differentiation of arc-related magmas, and do not support the oceanic spreading center geodynamic setting previously proposed by some authors


Álvarez, J., 1987. Mineralogía y química de los depósitos de cromita podiforme de las dunitas de Medellín, Departamento de Antioquía, Colombia. Boletín Geológico, 33(1-3), 34-46.

Augé, T., Johan, Z., 1988. Comparative study of chromite deposits from Troodos, Vourinos, North Oman and New Caledonia ophiolites. In: Boissonas, J., Omenetto, P. (eds.). Mineral deposits within the European Comunity. Society for Geology Applied to Mineral Deposits, 6 (Special Publications), 267-288.

Barnes, S.J., Roeder, L.P., 2001. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. Journal of Petrology, 42, 2279-2302.

Baumgartner, P.O., Denyer, P., 2006. Evidence for Middle Cretaceuos accretion at Santa Elena Peninsula (Santa Rosa Accretionary complex), Costa Rica. Geologica Acta, 4(1-2), 179-191.

Baumgartner, P.O., Flores, K., Bandini, A.N., Girault, F., Cruz, D., 2008. Upper Triassic to Cretaceous radiolara from Nicaragua and northern Costa Rica - The Mesquito composite oceanic terrane. Ofioliti, 33, 1-19.

Beccaluva, L., Chinchilla-Chaves, A.L., Coltorti, M., Giunta, G., Siena, F., Vaccaro, C., 1999. Petrological and structural significance of the Santa Elena-Nicoya ophiolitic complex in Costa Rica and geodynamic implications. European Journal of Mineralogy, 11, 1091-1107.

Beeson, M.H., Jackson, E.J., 1969. Chemical composition of altered chromites from the Stillwater Complex, Montana. American Mineralogist, 54, 1084-1100.

Brenan, J.M., Andrews, D.R.A., 2001. High-temperature stability of laurite and Ru-Os-Ir alloys and their role in PGE fractionation in mafic magmas. The Canadian Mineralogist, 39, 341-360.

Buenaventura, J., 2001. Memoria explicativa del mapa de recursos minerales de Colombia: minerales metálicos, preciosos y energéticos a escalas 1:500.000. Subdirección de recursos del subsuelo. República de Colombia, Ministerio de Minas y Energía, Instituto de Investigación e Información Geocientífica, Minero Ambiental y Nuclear, Ingeominas, 64pp.

Denyer, P., Baumgartner, P.O., Gazel, E., 2006. Characterization and tectonic implications of Mesozoic-Cenozoic oceanic assemblage of Costa Rica and Western Panama. Geologica Acta, 4(1-2), 219-235.

Denyer, P., Gazel, E., 2009. The Costa Rican Jurassic to Miocene oceanic complexes: origin, tectonics and relations. Journal of South American Earth Sciences, 28, 429-442.

Dick, H.J.B., Bullen, T., 1984. Chromian spinel as a petrogentic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86, 54-76.

Dickey, J.S.Jr., 1975. A hypothesis of origin for podiform chromite deposits. Geochimica et Cosmochimica Acta, 39, 1061-1074.

Economou-Eliopoulos, M., 1996. Platinum group element distribution in chromite ores from ophiolite complexes: implication for their exploration. Ore Geology Reviews, 11, 363-381.

El Ghorfi, M., Melcher, F., Oberthur, T., Boukhari, A.E., Maacha, L., Maddi, A., Mhaili, M., 2008. Platinum group minerals in podiform chromitites of Bou Azzer ophiolite, Anti Atlas, Central Morocco. Mineralogy and Petrology, 92, 59-80.

Flores, K., Baumgartner, P.O., Skora, S., Baumgartner, L., Muntener, O., Cosca, M., Cruz, D., 2007. The Siuna Serpentinite Melange: An Early Cretaceous Subduction/Accretion of a Jurassic Arc. San Francisco (USA), American Geophysical Union, Fall Meeting 10-14 December 2007, abstract, T11D-03.

Friedrich, G., Brunemann, H.G., Wilcke, J., Stumpfl, E.F., 1980. Chrome spinels in lateritic soils and ultramafic source rocks, Acoje Mine, Zambales, Philippines. In: Jankovic, S., Petrasheck, W.E. (eds.). An International symposium on metallogeny of mafic and ultramafic complexes: the eastern Mediterranean-western Asian area, and its comparison with similar metallogenic environments in the world. Athens, 9-11 October 1980, UNESCO-IGCP n° 1691, 257-278.

Garuti, G. 2004. Chromite-Platinum Group Element magmatic deposits. In: De Vivo, B., Stüwe, K. (eds.). Geology, Encyclopedia of Life Support Systems (EOLSS). Oxford (United Kingdom), UNESCO, Eolss Publisher,

Garuti, G., Economou-Eliopoulos, M., Zaccarini, F., 1999a. Paragenesis and composition of laurite from the chromitites of Othrys (Greece): implications for Os-Ru fractionation in upper mantle of the Balkan peninsula. Mineralium Deposita, 34, 312-319.

Garuti, G., Pushkarev, E.V., Zaccarini, F., 2005. Diversity of chromite-PGE mineralization in ultramafic complexes of the Urals. In: Törmänen, T.O., Alapieti, T.T. (eds.). Platinum Group Elements – from Genesis to Benefication and Environmental Impact. Oulu (Finland), August 8-11, 10th International Platinum Symposium, extended abstracts, 341-344.

Garuti, G., Zaccarini, F., Moloshag, V., Alimov, V., 1999b. Platinum group minerals as indicator of sulfur fugacity in ophiolitic upper mantle: an example from chromitites of the Ray-Iz ultramafic complex, Polar Urals, Russia. The Canadian Mineralogist, 37, 1099-1115.

Gazel, E., Denyer, P., Baumgartner, P.O., 2006. Magmatic and geotectonic significance of Santa Elena Peninsula, Costa Rica. Geologica Acta, 4(1-2), 193-202.

Giunta, G., Beccaluva L., Siena, F., 2006. Caribbean Plate margin evolution: constraints and current problems. Geologica Acta, 4(1-2), 265-277.

Hauff, F., Hoernle, K., Bogard, van den P., 2000. Age and geochemistry of basaltic complexes in western Costa Rica: Contribution to the geotectonic evolution of Central America. Geochemistry Geophysics Geosystems, 1, doi: 1999GC000020.

Jager-Contreras, G., 1977. Geología de las mineralizaciones de cromita al Este de la Peninsula de Santa Elena, Provincia de

Guanacaste, Costa Rica. In Spanish. Doctoral Thesis. San José (Costa Rica), University of Costa Rica, 136pp.

Kapsiotis, A., Grammatikopoulos, T., Tsikouras, V., Hatzipanagiotou, Zaccarini, F., Garuti, G., 2009. Chromian spinel composition and Platinum group element mineralogy of chromitites from the area of Milia, Pindos ophiolite complex, Greece. The Canadian Mineralogist, 47, 883-902.

Kamenetsky, V.S., Crawford, A.J., Meffre, S., 2001. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology 42, 655-671.

Kocks, H., Melcher, F., Meisel, T., Burgath, K.-P., 2007. Diverse contributing sources to chromite petrogenesis in the Shebenik Ophiolitic Complex, Albania: evidence from new PGE- and Os-isotope data. Mineralogy and Petrology, 91, 139-170.

Kuipjers, E.P., Jager-Contreras, G., 1979. Mineralizaciones de cromita en la Península de Santa Elena, Costa Rica. In Spanish. Ciencia Técnica, 3, 99-108.

Irvine, T.N., 1965. Chromian spinel as a petrogenetic indicator. Part I. Theory. Canadian Journal of Earth Sciences, 2, 648-672.

Irvine, T.N., 1967. Chromian spinel as a petrogenetic indicator. Part II. Petrological Application. Canadian Journal of Earth Sciences, 4, 71-103.

Lago, B.L., Rabinowicz, M., Nicolas, A., 1982. Podiform chromite ore bodies: a genetic model. Journal of Petrology, 23, 103-125.

Leblanc, M., 1991. Platinum group and gold in ophiolitic complexes: Distribution and fractionation from mantle to oceanic floor. In: Peters, Tj., Nicolas, A., Coleman, R. (eds.). Ophiolite genesis and evolution of the oceanic lithosphere. Ministry of Petroleum and Minerals, Sultanate of Oman, 231-260.

Leblanc, M., 1995. Chromitite and ultramafic rock compositional zoning through a Paleotransform fault, Poum, New Caledonia. Economic Geology, 90, 2028-2039.

Leblanc, M., Nicolas, A., 1992. Ophiolitic chromitites. International Geology Review, 34(7), 653-686.

Maurel, C., Maurel, P., 1982. Étude experimental de la distribution de l’aluminium entre bain silicate basique et spinel chromifere. Implications pétrogenetiques: tenore en chrome des spinelles. Bulletin de Mineralogie, 105, 197-202.

Melcher, F., Grum, W., Simon, G., Thalhammer, T.V., Stumpfl, F.E., 1997. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. Journal of Petrology, 38, 1419-1438.

Melcher, F., Grum, W., Thalhammer, T.V., Thalhammer, O.A.R., 1999. The giant chromite deposits at Kempirsai, Urals: constraints from trace element (PGE, REE) and isotope data. Mineralium Deposita, 34, 250-272.

Naldrett, A.J., Duke, J.M., 1980. Pt metals in magmatic sulfide ores. Science, 208, 1417-1424.

Naldrett, A.J., von Gruenevaldt, G., 1989. Association of platinum group elements with chromitite in layered intrusions and ophiolite complexes. Economic Geology, 84, 180-187.

Proenza, J.A., Zaccarini, F., Lewis, J.F., Longo, F., Garuti, G., 2007. Chromian spinel composition and the Platinum Group Minerals of the PGE-rich Loma Peguera chromitites, Loma Caribe peridotite, Dominican Republic. The Canadian Mineralogist, 45, 211-228.

Proenza, J.A., Melgarejo, J.C., 1998. Una introdución a la metalogenia de Cuba bajo la perspectiva de la tectónica de placas. Acta Geologica Hispanica, 33, 89-132

Proenza, J.A., Gervilla, F., Melgarejo, J.C., Reve, D., Rodríguez, Y.G., 1998. Ophiolitic chromitites from the Mercedita deposit (Cuba). Example of Al-rich chromites at the mantle-crust transition zone. Acta Geologica Hispanica, 33, 179-212.

Proenza, J.A., Gervilla, F., Melgarejo, J.C., Bodinier, J.L., 1999. Al and Cr rich chromitites from the mayari-Baracoa Ophiolitic Belt, (eastern Cuba): consequence of interaction between volatile-rich melts and peridotite in suprasubduction mantle. Economic Geology, 94, 547-566.

Proenza, J.A., Escayola, M., Ortiz, F., Pereira, E., Correa, A.M., 2004. Dunite and associated chromitites from Medellín (Colombia). Florence (Italy), 32nd International Geological Congress, Abstract volume, CD-ROM.

Rodríguez, S., 1986. Recursos Minerales de Venezuela. Caracas, Boletín del Ministerio de Energía y Minas, 15(27), 215pp.

Roeder, P.L., 1994. Chromite: from the fiery rain of chondrules to the Kilauea Iki lava lake. The Canadian Mineralogist, 32, 729-746.

Rollinson, H., 2008. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt composition. Contributions to Mineralogy and Petrology, 156, 273-288.

Savelieva, G.N., 2004. Chromite of the Polar Urals. In Pecchio, M., Andrade, F.R.D., D’Agostino, L.Z., Kahn, H., Sant’Agostino,

L.M., TassinarI, M.M.M.L. (eds.). Applied Mineralogy: Developments in Science and Technology. Águas de Lindoia (Brazil), 19-24 September 2004, Proceedings International Congress on Applied Mineralogy ICAM 2004, 943-945.

Stowe, C.W., 1994. Compositions and tectonic settings of chromite deposits through time. Economic Geology, 89, 528-546.

Thayer, T.P., 1946. Preliminary chemical correlation of chromite with the containing rocks. Economic Geology, 41, 202-217.

Thayer, T.P., 1970. Chromite segregations as petrogenetic indicators. The Geological Society of South Africa, 1 (Special Publications), 380-390.

Tournon, J., 1994. The Santa Elena Peninsula: an ophiolitic nappe and a sedimentary volcanic relative autochthonous. Profil, 7, 87-96.

Tredoux, M., Lindsay, N.M., Davies, G., McDonald, I., 1995. The fractionation of platinum group elements in magmatic system, with the suggestion of a novel causal mechanism. South African Journal of Geology, 98, 157-167.

Uysal, I., Zaccarini, F., Garuti, G., Meisel, T., Tarkian, M., Bernhardt, H.J., Sadiklar, M.B., 2007. Ophiolitic chromitites from the Kahramanmaras area, southeastern Turkey: their platinum group elements (PGE) geochemistry, mineralogy and Os-isotope signature. Ofioliti, 32, 151-161.

Uysal, I., Zaccarini, F., Sadiklar, M.B., Tarkian, M., Thalhammer, O.A.R., Garuti, G., 2009a. The podiform chromitites in the Dağküplü and Kavak mines Eskişeir ophiolite (NW-Turkey): Genetic implications of mineralogical and geochemical data.

Geologica Acta, 7(3), 351-362.

Uysal, I., Tarkian, M., Sadiklar, M.B., Zaccarini, F., Meisel, T., Garuti, G., Heidrich, S. 2009b. Petrology of Al- and Crrich ophiolitic chromitites from the Muğla, SW Turkey: implications from composition of chromite, solid inclusions of platinum group mineral, silicate, and base-metal mineral, and Os-isotope geochemistry. Contributions to Mineralogy and Petrology, 158, 659-674.

Zaccarini, F., 2005. Compositions of chromitite and associated solid inclusions: a key to understanding mantle and derived magmas. In Italian. Doctoral Thesis. Italy, University of Modena and Reggio Emilia, unpublished, 76pp.

Zaccarini, F., Proenza, A.J., Ortega-Gutierrez, F., Garuti, G., 2005. Platinum group minerals in ophiolitic chromitites from Tehuitzingo (Acatlan complex, southern Mexico): implications for post-magmatic modification. Mineralogy and Petrology, 84, 147-168.

Zaccarini, F., Proenza, J.A., Rudashevsky, N.S., Cabri, L.J., Garuti, G., Rudashevsky, V.N., Melgarejo, J.C., Lewis, J.F., Longo, F.,

Bakker, R., Stanley, C.J., (2009). The Loma Peguera ophiolitic chromitite (Central Dominican republic): a source of new platinum group minerals (PGM) species. Neues Jahrbuch für Mineralogie Abhandlungen, 185(3), 335-349.

Zhou, M.-F., Bai, W.-J., 1992. Chromite deposits in China and their origin. Mineralium Deposita, 27, 192-199.

Zhou, M.-F., Robinson, P.T., 1997. Origin and tectonic environment of podiform chromite deposits. Economic Geology, 92, 259-262.

Zhou, M.-F., Sun, M., Keays, R.R., Kerrich, R.W., 1998. Controls on platinum group elemental distributions of podiform chromitites: A case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62(4), 677-688.




Most read articles by the same author(s)

1 2 > >>