The fossil recordand evolution of freshwater plants: A review
DOI:
https://doi.org/10.1344/105.000001619Keywords:
Freshwater algae, Aquatic angiosperms, Charophytes, Evolution, PalaeoecologyAbstract
Palaeobotany applied to freshwater plants is an emerging field of palaeontology. Hydrophytic plants reveal evolutionary trends of their own, clearly distinct from those of the terrestrial and marine flora. During the Precambrian, two groups stand out in the fossil record of freshwater plants: the Cyanobacteria (stromatolites) in benthic environments and the prasinophytes (leiosphaeridian acritarchs) in transitional planktonic environments. During the Palaeozoic, green algae (Chlorococcales, Zygnematales, charophytes and some extinct groups) radiated and developed the widest range of morphostructural patterns known for these groups. Between the Permian and Early Cretaceous, charophytes dominated macrophytic associations, with the consequence that over tens of millions of years, freshwater flora bypassed the dominance of vascular plants on land. During the Early Cretaceous, global extension of the freshwater environments is associated with diversification of the flora, including new charophyte families and the appearance of aquatic angiosperms and ferns for the first time. Mesozoic planktonic assemblages retained their ancestral composition that was dominated by coenobial Chlorococcales, until the appearance of freshwater dinoflagellates in the Early Cretaceous. In the Late Cretaceous, freshwater angiosperms dominated almost all macrophytic communities worldwide. The Tertiary was characterised by the diversification of additional angiosperm and aquatic fern lineages, which resulted in the first differentiation of aquatic plant biogeoprovinces. hytoplankton also diversified during the Eocene with the development of freshwater diatoms and chrysophytes. Diatoms, which were exclusively marine during tens of millions of years, were dominant over the Chlorococcales during Neogene and in later assemblages. During the Quaternary, aquatic plant communities suffered from the effects of eutrophication, paludification and acidification, which were the result of the combined impact of glaciation and anthropogenic disturbance.
References
Adam, D.P., Mahood, A.D., 1981. Chrysophyte cysts as potential environmental indicators. Geological Society of America Bulletin, 92, 839-844.
Ahmad-Reza, B., Müller J., Schmidt, R., Schneider, J., Schröder, H.G., Starckenbrock, I., Sturm, M., 1986. Sediments and sedimentary history of Lake Attersee (Salzkammergut, Austria). Hydrobiologia, 143, 233-246.
Allison, C.W., Hilgert, J. H., 1986. Scale microfossils of early Cambrian age from Canada. In: Kristiansen, J., Andersen, R.A. (eds.). Chrysophytes: Aspects and Problems, Cambridge, Cambridge University Press, 273-315.
Archangelsky, A., Phipps, C.J., Taylor, T.T., Taylor, E.L., 1999. Paleoazolla, a new heterosporous fern from the Upper Cretaceous of Argentina. American Journal of Botany, 86, 1200-1206.
Barale, G., 1999. Sur la présence d’une nouvelle spèce d’Isoetites dans la flore du Crétacé inférieur de la région de Tatouine (Sud Tunisien): implications paléoclimatiques et phylogénetiques. Canadian Journal of Botany, 77, 189-196.
Barale, G., Ouaja, M., 2001. Découverte de nouvelles flores avec des restes à affinités angiospermiennes dans le Crétacé inférieur du Sud Tunisien. Cretaceous Research, 22, 131-143.
Batten, D.J., 1989. Cretaceous freshwater dinoflagellates. Cretaceous Research, 10, 271-273.
Batten, D.J., 1996. Colonial Chlorococcales. In: Jansonius, J., McGregor, D.C. (eds.). Palynology: Principles and Applications, American Association of Stratigraphic Palynologists Foundation, 1, 191-203.
Batten, D.J., Grenfell, H.R., 1996. Chapter 7D. Botryococcus. In: Jansonius, J., McGregor, D.C. (eds.). Palynology: Principles and Applications, American Association of Stratigraphic Palynologists Foundation, 1, 205-214.
Batten, D.J., Kovach, W.L., 1993. Diversity changes in lycopsid and aquatic fern megaspores through geologic time. Paleobiology, 19, 28-42.
Batten, D.J., Lister, J.K., 1988. Early Cretaceous dinoflagellate cysts and chlorococcalean algae from freshwater and low salinity palynofacies in the English Wealden. Cretaceous Research, 9, 337-367.
Baschnagel, R.A., 1942. Some microfossils from the Onondaga Chert of Central New York. Bulletin of the Buffalo Society of Natural Sciences, 17, 1-8.
Baschnagel, R.A., 1966. New fossil algae from the Middle Devonian of New York. Transactions of the American Microscopical Society, 85, 297-302.
Berger, J.P., 1986. Biozonation préliminaire des charophytes oligocènes de Suisse occidentale. Eclogae Geologicae Helvetiae, 79, 897-912.
Berger, J.P., 2002. From marine to freshwater environment: discussion around the first lacustrine complex ecosystems. Fribourg, Workshop on Freshwater and Brackish Palaeoecosystems, European Palaeontological Association, 31-34.
Bilan, W., 1988. The epicontinental Triassic charophytes of Poland. Acta Palaeobotanica, 28, 63-161.
Blanc-Louvel, C., 1984. Le genre “Ranunculus L.” dans le Berriasien (Crétacé inf.) de la province de Lérida (Espagne). Ilerda, 45, 83-92.
Blanc-Louvel, C., 1991. Etude complémentaire de Montsechia vidali (Zeiller) Teixeira 1954: Nouvelle attribution systématique. Annales de Paléontologie, 77, 129-141.
Bradbury, J.P., 1988. Fossil diatoms and Neogene paleolimnology. Palaeogeography, Palaeoclimatology, Palaeoecology, 62, 299-316.
Brenner, W., Foster, C.B., 1994. Chlorophycean algae from the Triassic of Australia. Review of Palaeobotany and Palynology, 80, 209-234.
Breuer, R., 1988. Zur taxonomischen Gliederung der Familie Porocharaceae (Charophyta). Paläontologische Zeitung, 62, 3-10.
Brugam, R.B., 1978. Human disturbance and the historical development of Linsley Pond. Ecology, 59, 16-36.
Butterfield, N.J., Rainbird, R.H., 1998. Diverse organic-walled fossils, including “possible dinoflagellates”, from the early Neoproterozoic of Arctic Canada. Geology, 26, 963-966.
Charles, D.F., 1985. Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology, 66, 994-1011.
Choquette, G.B., 1956. A new Devonian charophyte. Journal of Palaeontology, 30, 1371-1374.
Clausing, A., 1999. Palaeoenvironmental significance of the green alga Botryococcus in the lacustrine Rotliegend (Upper Carboniferous, Lower Permian). Historical Biology, 13, 221-234.
Collinson, M.E., 1980. A new multiple floated Azolla from the Eocene of Britain with a brief review of the genus. Palaeontology, 23, 213-229.
Collinson, M.E., 1988. Freshwater macrophytes in palaeolimnology. Palaeogeography, Palaeoclimatology, Palaeoecology, 62, 317-342.
Collinson, M. E., 1996. “What use are fossil ferns?” – 20 years on: with a review of the fossil history of extant pteridophyte families and genera. In: Camus, J.M., Gibby, M., Johns, R.J. (eds.). Pteridology in Perspective. London, Royal Botanic Gardens Kew, 349-394.
Cook, C.D.K., 1996. Aquatic Plant Book. Amsterdam, SPB Academic Publishing, 228 pp.
Cornell, W.C., 1972. Late Cretaceous chrysomonad cysts. Palaeogeography, Palaeoclimatology, Palaeoecology, 12, 33-47.
Cronberg, G., Sandgren, C.D., 1986. A proposal for the development of standardized nomenclature and terminology for chrysophycean statospores. In: Kristiansen, J., Andersen, R., (eds.). Chrysophytes: Aspects and Problems. Cambridge, Cambridge University Press, 317-328.
Davis, R.B., 1987. Paleolimnological diatom studies of acidification of lakes by acid rain: an application of Quaternary Science. Quaternary Science Review, 6, 147-163.
Dilcher, D.L., 1991. Aquatic Angiosperm Fossil Record. American Journal of Botany, 78, Spl. 6, 158.
Doyle, J.A., Hickey, L.J., 1976. Pollen and leaves from the MidCretaceous Potomac Group and their bearing on early angiosperm evolution. In: Beck, C.B. (ed.). Origin and Early Evolution of Angiosperms. New York, Columbia University Press, 139-206.
Eastwood, W.J., Roberts, N., Lamb, H.F., Tibby, J.C., 1999. Holocene environmental change in southwest Turkey: a palaeoecological record of lake and catchment-related changes. Quaternary Science Reviews, 18, 671-695.
Edwards, D.S., Lyon, A.G., 1983. Algae from the Rhynie Chert. Botanical Journal of the Linnean Society, 86, 37-55.
Feist, M., 1981. Charophytes du Crétacé moyen et données nouvelles sur l’évolution des Clavatoracées. Cretaceous Research, 2, 319-330.
Feist, M., Colombo, F., 1983. La limite Crétacé-Tertiaire dans le nord-est de l’Espagne, du point de vue des charophytes. Géologie Méditerranéenne, 10, 303-326.
Fensome, R.A., Williams, G.L., Barss, M.S., Freeman, J.M., Hill, J.M., 1990. Acritarchs and fossil prasinophytes: an index to genera, species and infraspecific taxa. American Association of Stratigraphic Palynologists, Contributions Series, 25, 1-771.
Friis, E.M., Pedersen, K.R., Crane, P.R., 2000. Reproductive structure and organization of basal angiosperms from the Early Cretaceous (Barremian or Aptian) of Western Portugal. International Journal of Plant Sciences, 161, Spl. 6, 169-182.
Friis, E.M., Pedersen, K.R., Crane, P.R., 2001. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature, 410, 357-360.
Galbrun, B., Feist, M., Colombo, F., Rocchia, R., Tambareau, Y., 1993. Magnetostratigraphy and biostratigraphy of Cretaceous-Tertiary continental deposits, Ager Basin, Province of Lérida, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 102, 41-52.
Gasse, F., 2000. Hydrological changes in the african tropics since the Last Glacial Maximum. Quaternary Science Reviews, 19, 189-211.
Gess, R.W., Hiller, N., 1995. Late Devonian charophytes from the Witteberg Group, South Africa. Review of Palaeobotany and Palynology, 8, 417-428.
Goth, K., 1990. Der Messeler Ölschiefer – ein Algenlaminit. Courier Forschungsinstitut Senckenberg, 107, 1-143.
Graham, L.E., 1993. Origin of Land Plants. New York, ed. John Wiley and Sons, 287 pp.
Grambast, L., 1968. Evolution of the utricle in the charophyte genera Perimneste Harris and Atopochara Peck. Journal of the Linnean Society (Botany), 61, 5-11.
Grambast, L., 1974. Phylogeny of the Charophyta. Taxon, 23, 463-481.
Grambast, L., Gutiérrez, G., 1977. Espèces nouvelles de charophytes du Crétacé supérieur terminal de la province de Cuenca (Espagne). Paléobiologie Continentale, 8, 1-28.
Gray, J., 1985. The microfossil record of early land plants; advances in understanding of early terrestrialization, 1970-1984. Philosophical Transactions of the Royal Society of London B, 309, 67-195.
Gray, J., Boucot, A.J., 1989. Is Moyeria an euglenoid?. Lethaia, 22, 447-456.
Guy-Ohlson, D., 1996. Chapter 7B Prasinophycean algae. In: Jansonius, J., McGregor, D.C. (eds.). Palynology, Principles and Applications. American Association of Stratigraphic Palynologists Foundation, 1, 181-189.
Haas, J.N., 1994. First identification key for charophyte oospores from central Europe. European Journal of Phycology, 229, 227-235.
Hall, J.W., 1969. Studies on fossil Azolla: primitive types of megaspores and massulae from the Cretaceous. American Journal of Botany, 56, 1173-1180.
Happey-Wood, C.M., 1988. Ecology of freshwater planktonic green algae. In: Sandgren, C.D. (ed.). Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge, Cambridge University Press, 175-226.
Harding, I.C., Allen, R.M., 1995. Dinocysts and the palaeoenvironmental interpretation of non-marine sediments: an example from the Wealden of the Isle of Wight (Lower Cretaceous, southern England). Cretaceous Research, 16, 727-743.
Harper, D., 1992. Eutrophication of Freshwater. Principles, problems and restoration. London, ed. Chapman and Hall, 327 pp.
Harris, T.M., 1939. British Purbeck Charophyta. London, ed. Natural History British Museum, 83 pp.
Hemsley, A.R., 1990. Parka decipiens and land plant spore evolution. Historical Biology, 4, 39-50.
Hemsley, A.R., Scott, A.C., Collinson, M.E., 1999. The architecture and functional biology of freely dispersed megaspores. In: Kurmann, M.H., Hemsley, A.R. (eds.). The Evolution of Plant Architecture. London, Royal Botanic Gardens Kew, 253-277.
Heredeen, P.S., Les, D.H., Dilcher, D.L. 1990. Fossil Ceratophyllum (Ceratophyllaceae) from the Tertiary of North America. American Journal of Botany, 77, 7-16.
Hickey, R.J., 1986. The early evolutionary and morphological diversity of Isoetes with descriptions of two new neotropical species. Systematic Botany, 11, 309-321.
Hickey, L.J., Doyle, J.A., 1977. Early Cretaceous fossil evidence for angiosperm evolution. Botanical Review, 43, 3-103.
Hill, C.R., El-Khayal, A.A., 1983. Late Permian plants including Charophytes from the Khuff Formation of Saudi Arabia. Bulletin British Museum of Natural History, 37, 105-112.
Hoffman, G.L., Stockey, R.A, 1997. Morphology and paleoecology of Ricciopsis speirsae sp. nov. (Ricciaceae) a fossil liverwort from the Paleocene Joffre Bridge locality, Alberta, Canada. Canadian Journal of Botany, 75, 1375-1381.
Hoffmann, P., 1976. Environmental diversity of Middle Precambrian stromatolites. In: Walter, M.R. (ed.). Stromatolites. New York, Elsevier, 599-611.
Hoffmann, H.J., Pearson, D.A.B., Wilson, B.H., 1980. Stromatolites and fenestral fabric in Early Proterozoic Huronian Supergroup, Ontario. Canadian Journal of Earth Sciences, 17, 1351-1357.
Ishchenko, T.A., Ishchenko, A.A., 1982. Charophytes found in the Upper Silurian of Podolia. In: Teslenko, Y.V. (ed.). Systematics and Evolution of Fossil Plants. Kiev, Nauk Dumka, 21-32. [in Russian].
Jackson, S.T., Futyma, R.P., Wilcox, D.A., 1988. A paleoecological test of a classical hydrosere in the Lake Michigan dunes. Ecology, 69, 928-936.
Jux, U., 1977. Über die Wandstrukturen Sphaeromorpher Achritarchen: Tasmanites Newton, Tapajonites Sommerand Van Boekel, Chuaria, Walcott. Palaeontographica, Abt. B, 160, 1-16.
Karol, K.G., McCourt, R.M., Cimino, M.T., Delwiche, C.F., 2001. The closest living relatives of land plants. Science, 294, 2351-2353.
Kenrick, P., Crane, P.R., 1997. The origin and early diversification of land plants. A cladistic study. Washington and London, Smithsonian Institution Press, 441 pp.
Kidston, R., Lang, W.H., 1921. On Old Red Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part 5. The Thallophyta occurring in the peat-bed, the succession of the plants throughout a vertical section of the bed and the conditions of accumulation and preservation of the deposit. Transactions of the Royal Society of Edinburgh, 52, 822-902.
Krassilov, V., Schuster, R.M., 1984. Palaeozoic and Mesozoic fossils. In: Schuster, R.M. (ed.). New Manual of Bryology. Nichinan, Hattori Botanical Laboratory, 2, 1172-1193.
Kröpelin, S., Soulié Märsche, I., 1991. Charophyte remains from Wadi Howar as evidence for deep Mid-Holocene freshwater lakes in the Eastern Sahara of Northwest Sudan. Quaternary Research, 36, 210-223.
Lee, R.E., 1989. Phycology, 2nd Edition. Cambridge, Cambridge University Press, 645 pp.
Leitch, I.J., Hanson, L., 2002. DNA C-values in seven families fill phylogenetic gaps in the basal angiosperms. Botanical Journal of the Linnean Society, 140, 175-179.
Li, W.T., 1998. Les charophytes de la Formation Paomagang de Dangyang (Chine). La limite Crétacé –Tertiaire, âges des intertraps du Deccan à Nagpur, Inde, et de l’Union de l’Inde et l’Asie. Beijing, Éditions de l’Industrie Pétrolière, 227 pp.
Lipps, J.H., 1993. Fossil Prokaryotes and Protists. Boston, Blackwell Scientific Publications, 342 pp.
Lu, H.N., Luo, Q.X., 1984. Upper Permian and Triassic fossil charophytes from Xinjiang, with special reference to the development of Upper Paleozoic to Lower Mesozoic charophyte floras. Acta Micropaleontologica Sinica, 1, 157-168.
Lugardon, B., Grauvogel-Stamm, L., Coquel, R., BrousmicheDelcambre, C., 2000. Spores à ultrastructure isoétalienne chez les lycophytes triasiques et plus anciennes. Lyon, Colloque de Paléobotanique, Organisation Française de Paléobotanique, 11.
Mädler, K., 1954. Azolla aus dem Quartär und Tertiär sowie ihre Bedeutung für die Taxonomie älterer Sporen. Geologisches Jahrbuch, 70, 143-158.
Mai, D.H., 1985. Entwicklung der Wasser und SumpfpflanzenGesellschaften Europas von der Kreide bis ins Quartär. Flora, 176, 449-511.
Mai, D.H., 1995. Tertiäre Vegetationsgeschichte Europas. Jena, Gustav Fischer Verlag, 691 pp.
Majewski, S.P., Cumming, B.F., 1999. Paleolimnological investigation of the effects of post-1970 reductions of acidic deposition on an acidified Adirondack lake. Journal of Paleolimnology, 21, 207-213.
Martín-Closas, C., 1999. Epiphytic overgrowth of charophyte thalli by stromatolite-like structures and fungi in the Lower Cretaceous of the Iberian Ranges (Spain). Australian Journal of Botany, 47, 305-313.
Martín-Closas, C., Bosch, R., Serra-Kiel, J., 1999. Biomechanics and evolution of spiralization in charophyte fructifications. In: Kurmann, M.H., Hemsley, A.R. (eds.). The evolution of plant architecture. London, Royal Botanic Gardens Kew, 399-421.
Martín-Closas, C., Diéguez, C. 1998. Charophytes from the Lower Cretaceous of the Iberian Ranges (Spain). Palaeontology, 41, 1133-1152.
Martín-Closas, C., Gomez, B., de la Fuente, M., Salas, R., 2002. Large Barremian lacustrine systems of Iberia and their aquatic flora. Athens, 6th European Palaeobotany-Palynology Conference, 126-127.
Martín-Closas, C., Serra-Kiel, J., 1991. Evolutionary patterns of Clavatoraceae (Charophyta) analysed according to environmental change during Malm and Lower Cretaceous. Historical Biology, 5, 291-307.
Martín-Closas, C., Schudack, M., 1991. Phylogenetic analysis and systematization of post- paleozoic charophytes. Revue de la Société Botanique de France, 138 (Actualités Botaniques), 1, 53-71.
Matthiessen, J., Kunz-Pirrung, M., Mudie, P., 2000. Freshwater chlorophycean algae in recent marine sediments of the Beaufort, Laptev and Kara Seas (Arctic Ocean) as indicators of river runoff. International Journal of Earth Sciences, 89, 470-485.
Meyen, S.V., 1987. Fundamentals of Palaeobotany. London, ed. Chapman and Hall, 413 pp.
Mohr, B., Friis, E.M., 2000. Early angiosperms from the Aptian Crato Formation (Brazil), a preliminary report. International Journal of Plant Sciences, 161, 155-167.
Mojon, P.O., 1989. Polymorphisme écophenotypique et paléoécologique des Porocharacées (Charophytes) du Crétacé basal (Berriasien) du Jura Franco-Suisse. Revue de Paléobiologie, 2, 505-524.
Musacchio, E.A., 1971. Charophytas de la Formación La Amarga (Cretácico inferior, Provincia de Neuquén, Argentina). Revista del Museo de La Plata, 4, 19-38.
Niklas, K.J., 1976. Morphological and ontogenetic reconstruction of Parka decipiens Fleming and Pachytheca Hooker from the Lower Old Red Sandstone, Scotland. The Royal Society of Edinburgh Transactions, 69, 483-499.
Peck, R.E., 1957. North American Charophyta. Geological Survey Professional Paper, 294 A, 1-44.
Peck, R.E., Eyer, J.A., 1963. Pennsylvanian, Permian and Triassic Charophyta of North America. Journal of Palaeontology, 37, 835-844.
Peniguel, G., Couderc, R., Seyve, C., 1989. Les microalgues actuelles et fossiles- Interêts stratigraphique et pétrolier. Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine, 13, 455-482.
Perasso, R., Baroin, A., Qu, L.H., Bachellerie, J.P., Adoutte, A., 1989. Origin of the algae. Nature, 339, 142-144.
Petit-Maire, N., Riser, J., 1981. Holocene Lake deposits and palaeoenvironments in central Sahara, Northeastern Mali. Palaeogeography, Palaeoclimatology, Palaeoecology, 35, 45- 61.
Pia, J., 1927. Charophya. In: Hirmer, M. (ed.). Handbuch der Paläobotanik. München-Berlin, ed. R. Oldenbourg Druck und Verlag, 1, 88-93.
Pollingher, U., 1986. Non-siliceous algae in a five meter core from Lake Kinneret (Israel). Hydrobiologia, 143, 213-216.
Proctor, V.W., 1999. Charophytivory, Playas y Papalotes, a local paradigm of global relevance. Australian Journal of Botany, 47, 399-406.
Racki, G., 1982. Ecology of the primitive charophyte algae; a critical review. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 162, 388-399.
Retallack, G.J., 1997. Earliest Triasic origin of Isoetes and quillwort evolutionary radiation. Journal of Palaeontology, 71, 500-521.
Retallack, G.J., Dilcher, D.L., 1986. Cretaceous angiosperm invasion of North America. Cretaceous Research, 7, 227-252.
Rieley, J.O., Page S.E., 1990. Ecology of Plant Communities. New York, ed. Longman Scientific and Technical, 178 pp.
Riveline J., 1986. Les charophytes du Paléogène et du Miocène inférieur d’Europe occidentale. Paris, Editions du Centre National de la Recherche Scientifique, Cahiers de Paléontologie, 227 pp.
Riveline, J., Berger, J.P., Bilan, W., Feist, M., Martín-Closas, C., Schudack, M.E., Soulié-Märsche, I., 1996. European Mesozoic-Cenozoic Charophyte Biozonation. Bulletin de la Société Géologique de France, 167, 453-468.
Rothwell, G.W., Stockey, R.A., 1994. The role of Hydropteris pinnata gen. et sp. nov. in reconstructing the cladistics of heterosporous ferns. American Journal of Botany, 81, 479-492.
Ryback, M., Rybak, I., Dickman, M., 1987. Fossil chrysophycean cyst flora in a small meromictic lake in southern Ontario, and its paleoecological interpretation. Canadian Journal of Botany, 65, 2425-2440.
Saidakovski, L.Y., 1966. Biostratigraphy of Triassic deposits in the south of the Russian platform. Transactions of the Academy of Sciences of the USSR, Geological Institute, 143, 93-144.
Sandgren, C.D., 1991. Chrysophyte reproduction and resting cysts: a paleolimnologist’s primer. Journal of Paleolimnology, 5, 1-9.
Salas, R., Casas, A., 1993. Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine Cycle of the Eastern Iberian Basin. Tectonophysics, 228, 33-55.
Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Meléndez, A., Alonso, A., 2001. Evolution of the Mesozoic central Iberian Rift System and its Cainozoic inversion (Iberian chain). In: Ziegler, P.A., Cavazza, W., Robertson, A.H.F., Crasquin-Soleau, S. (eds.). Peri-Tethys Memoir 6: PeriTethyan Rift/Wrench Basins and Passive Margins, Paris, Mémoires du Musée National d’Histoire Naturelle, 186, 145-185.
Saporta, G. de, 1894. Flore fossile du Portugal. Nouvelles contributions à la flore Mésozoique accompagnées d’une notice stratigraphique par Paul Choffat. Lisboa, Imprimerie de ’Académie Royale des Sciences, 288 pp.
Schopf, J.W., 1999. Cradle of Life: the Discovery of Earth’s Earliest Fossils. Princeton, Princeton University Press, 367pp.
Schudack, M.E., Turner, C.E., Peterson, F., 1998. Biostratigraphy, paleoecology and biogeography of charophytes and ostracodes from the Upper Jurassic Morrison Formation, Western Interior, USA. Modern Geology, 22, 379-414.
Schuster, E., 1970. Die Sporen der Gattung Stereisporites Thomson & Pflug, 1953 aus dem älteren Mesophytikum des Germanischen Beckens. Paläontologische Abhandlungen, B, 683-709.
Skog, J.E., Dilcher, D.L., 1992. A new species of Marsilea from the Dakota Formation in central Kansas. American Journal of Botany, 79, 982-988.
Skog, J.E., Dilcher, D.L., 1994. Lower vascular plants of the Dakota Formation in Kansas and Nebraska, USA. Review of Palaeobotany and Palynology, 80, 1-18. Smol, J.P., Charles, D.F., Whitehead, D.R., 1984. Mallomonadacean microfossils provide evidence of recent lake acidification. Nature, 307, 628-630.
Sommer, U., 1988. Growth and survival strategies of planktonic diatoms. In: Sandgren, C.D. (ed.). Growth and Reproductive Strategies of Freshwater Phytoplancton. Cambridge, Cambridge University Press, 227-260.
Soulié-Märsche, I., 1989. Étude Comparée de Gyrogonites de Charophytes Actuelles et Fossiles et Phylogénie des Genres Actuels. Millau, Imprimerie des Tilleuls Ed., 237 pp.
Stebbins, G.L., Hill, G.J.C., 1980. Did multicellular plants invade the land?. American Naturalist, 115, 342-353.
Steemans, P., 2000. Miospore evolution from the Ordovician to the Silurian. Review of Palaeobotany and Palynology, 113, 189-196.
Stockey, R.A., Rothwell, G.W., 1997. The aquatic angiosperm Trapago angulata from the Upper Cretaceous (Maastrichtian) St. Mary River Formation of Southern Alberta. Interna-
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
Geologica Acta is the property of the UB, GEO3BCN, IDAEA and UAB. Geologica Acta must be cited for any partial or full reproduction. Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows anyone to reproduce and disseminate the content of the journal and even make derivative works crediting authorship and provenance and distributing possible derivative works under the same or an equivalent license.
Author Rights
Authors retain the copyright on their papers and are authorized to post them on their own web pages or institutional repositories. The copyright was retained by the journal from the year 2003 until 2009. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission from Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.